Integrality gap minimization heuristics for binary mixed integer nonlinear programming
We present two feasibility heuristics for binary mixed integer nonlinear programming. Called integrality gap minimization algorithm (IGMA)—versions 1 and 2, our heuristics are based on the solution of integrality gap minimization problems with a space partitioning scheme defined over the integer var...
Gespeichert in:
| Veröffentlicht in: | Journal of global optimization Jg. 71; H. 3; S. 593 - 612 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2018
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present two feasibility heuristics for binary mixed integer nonlinear programming. Called integrality gap minimization algorithm (IGMA)—versions 1 and 2, our heuristics are based on the solution of integrality gap minimization problems with a space partitioning scheme defined over the integer variables of the problem addressed. Computational results on a set of benchmark instances show that the proposed approaches present satisfactory results. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-018-0623-4 |