A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces

In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis Ročník 64; číslo 12; s. 2787 - 2804
Hlavní autori: Boţ, Radu Ioan, Wanka, Gert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 15.06.2006
Elsevier
Predmet:
ISSN:0362-546X, 1873-5215
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns out to be weaker than the generalized interior-point regularity conditions given so far in the literature. Moreover, it provides a weak sufficient condition for Fenchel duality regarding convex optimization problems in infinite dimensional spaces. As an application, we discuss the strong conical hull intersection property (CHIP) for a finite family of closed convex sets.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2005.09.017