A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces

In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis Jg. 64; H. 12; S. 2787 - 2804
Hauptverfasser: Boţ, Radu Ioan, Wanka, Gert
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 15.06.2006
Elsevier
Schlagworte:
ISSN:0362-546X, 1873-5215
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns out to be weaker than the generalized interior-point regularity conditions given so far in the literature. Moreover, it provides a weak sufficient condition for Fenchel duality regarding convex optimization problems in infinite dimensional spaces. As an application, we discuss the strong conical hull intersection property (CHIP) for a finite family of closed convex sets.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2005.09.017