A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces
In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns...
Gespeichert in:
| Veröffentlicht in: | Nonlinear analysis Jg. 64; H. 12; S. 2787 - 2804 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
15.06.2006
Elsevier |
| Schlagworte: | |
| ISSN: | 0362-546X, 1873-5215 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we present a new regularity condition for the subdifferential sum formula of a convex function with the precomposition of another convex function with a continuous linear mapping. This condition is formulated by using the epigraphs of the conjugates of the functions involved and turns out to be weaker than the generalized interior-point regularity conditions given so far in the literature. Moreover, it provides a weak sufficient condition for Fenchel duality regarding convex optimization problems in infinite dimensional spaces. As an application, we discuss the strong conical hull intersection property (CHIP) for a finite family of closed convex sets. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0362-546X 1873-5215 |
| DOI: | 10.1016/j.na.2005.09.017 |