Self-Supervised Learning-Based Time Series Classification via Hierarchical Sparse Convolutional Masked-Autoencoder

In recent years, the use of time series analysis has become widespread, prompting researchers to explore methods to improve classification. Time series self-supervised learning has emerged as a significant area of study, aiming to uncover patterns in unlabeled data for richer information. Contrastiv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE open journal of signal processing Ročník 5; s. 964 - 975
Hlavní autori: Yu, Ting, Xu, Kele, Wang, Xu, Ding, Bo, Feng, Dawei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2644-1322, 2644-1322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, the use of time series analysis has become widespread, prompting researchers to explore methods to improve classification. Time series self-supervised learning has emerged as a significant area of study, aiming to uncover patterns in unlabeled data for richer information. Contrastive self-supervised learning, particularly, has gained attention for time series classification. However, it introduces inductive bias by generating positive and negative samples. Another approach involves Masked Autoencoders (MAE), which are effective for various data types. However, due to their reliance on the Transformer architecture, they demand significant computational resources during the pre-training phase. Recently, inspired by the remarkable advancements achieved by convolutional networks in the domain of time series forecasting, we aspire to employ convolutional networks utilizing a strategy of mask recovery for pre-training time series models. This study introduces a novel model termed Hierarchical Sparse Convolutional Masked-Autoencoder, "HSC-MAE", which seamlessly integrates convolutional operations with the MAE architecture to adeptly capture time series features across varying scales. Furthermore, the HSC-MAE model incorporates dedicated decoders that amalgamate global and local information, enhancing its capacity to comprehend intricate temporal patterns. To gauge the effectiveness of the proposed approach, an extensive array of experiments was conducted across nine distinct datasets. The experimental outcomes stand as a testament to the efficacy of HSC-MAE in effectively mitigating the aforementioned challenges.
AbstractList In recent years, the use of time series analysis has become widespread, prompting researchers to explore methods to improve classification. Time series self-supervised learning has emerged as a significant area of study, aiming to uncover patterns in unlabeled data for richer information. Contrastive self-supervised learning, particularly, has gained attention for time series classification. However, it introduces inductive bias by generating positive and negative samples. Another approach involves Masked Autoencoders (MAE), which are effective for various data types. However, due to their reliance on the Transformer architecture, they demand significant computational resources during the pre-training phase. Recently, inspired by the remarkable advancements achieved by convolutional networks in the domain of time series forecasting, we aspire to employ convolutional networks utilizing a strategy of mask recovery for pre-training time series models. This study introduces a novel model termed Hierarchical Sparse Convolutional Masked-Autoencoder, "HSC-MAE", which seamlessly integrates convolutional operations with the MAE architecture to adeptly capture time series features across varying scales. Furthermore, the HSC-MAE model incorporates dedicated decoders that amalgamate global and local information, enhancing its capacity to comprehend intricate temporal patterns. To gauge the effectiveness of the proposed approach, an extensive array of experiments was conducted across nine distinct datasets. The experimental outcomes stand as a testament to the efficacy of HSC-MAE in effectively mitigating the aforementioned challenges.
Author Xu, Kele
Wang, Xu
Ding, Bo
Feng, Dawei
Yu, Ting
Author_xml – sequence: 1
  givenname: Ting
  orcidid: 0009-0004-4451-2275
  surname: Yu
  fullname: Yu, Ting
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Kele
  orcidid: 0000-0001-5997-5169
  surname: Xu
  fullname: Xu, Kele
  email: xukelele@163.com
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Xu
  orcidid: 0009-0007-0006-7781
  surname: Wang
  fullname: Wang, Xu
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Bo
  orcidid: 0000-0002-1236-8318
  surname: Ding
  fullname: Ding, Bo
  organization: College of Computer, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Dawei
  orcidid: 0000-0002-7587-8905
  surname: Feng
  fullname: Feng, Dawei
  organization: College of Computer, National University of Defense Technology, Changsha, China
BookMark eNpNUV1v1DAQtFCRKEd_QCUeIvGcw59x_FhO0BYdKlLaZ2vPXhcfaXzYyUn8-yZchfq0u6OZHe3Oe3I2pAEJuWR0zRg1n---dz_XnHK5FlKoRos35Jw3UtZMcH72qn9HLkrZU0q5YmwGzknusA91Nx0wH2NBX20R8hCHx_oLLON9fMKqwxyxVJseSokhOhhjGqpjhOomYobsfs1YX3UHyAWrTRqOqZ8Wzgz-gPIbfX01jQkHlzzmD-RtgL7gxUtdkYdvX-83N_X27vp2c7WtnVBqrB2VaKTWCtjOK4rCGPCyASF23nktHARFZYPQhrBTTClPpQFoAjAFqnViRW5Pe32CvT3k-AT5r00Q7T8g5UcLeYyuR6ubIKihTAvkkretCU6JEKQzujU4P3RFPp12HXL6M2EZ7T5Neb6v2FmoDedcLyx2YrmcSskY_rsyapek7JKUXZKyL0nNmo8nTUTEV_yGydlbPAM4ZJHV
CODEN IOJSAF
Cites_doi 10.1007/s11704-015-4478-2
10.5555/3524938.3525087
10.1007/s10618-014-0361-2
10.1109/ICCV48922.2021.00986
10.1016/j.psychres.2021.114135
10.1145/130385.130401
10.1109/JIOT.2021.3098464
10.1145/3394486.3403118
10.1007/s10618-022-00844-1
10.1109/CVPR42600.2020.00975
10.1007/s10618-020-00710-y
10.1109/TGRS.2024.3409378
10.1145/3447548.3467401
10.1016/j.aiopen.2021.08.002
10.1609/aaai.v37i4.25575
10.1145/3442381.3449903
10.1109/ICSE48619.2023.00207
10.1007/s11431-020-1647-3
10.1109/TITS.2021.3125737
10.1609/aaai.v36i8.20881
10.24963/ijcai.2021/324
10.1007/BF01074755
10.1016/j.scitotenv.2018.10.344
10.1109/CVPR52729.2023.01548
10.1109/TKDE.2020.3001195
10.48550/arXiv.1810.04805
10.1007/s10618-019-00617-3
10.1109/TIT.1967.1053964
10.1016/j.neunet.2021.01.001
10.1007/s10618-020-00701-z
10.1109/ICDAR.1995.598994
10.1109/CVPR52688.2022.01167
10.1109/CVPR52688.2022.01553
10.1109/ICDM.2016.0133
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOA
DOI 10.1109/OJSP.2024.3435673
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1322
EndPage 975
ExternalDocumentID oai_doaj_org_article_76f3090173e242889fc53ff4c9789e67
10_1109_OJSP_2024_3435673
10614789
Genre orig-research
GrantInformation_xml – fundername: National University of Defense Technology
  grantid: ZZCX-ZZGC-01-04
  funderid: 10.13039/501100007085
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c355t-c04e94775a1bd50e399ad46a33bdcd73caf5046ea8ffb5155d049aa6fa15a58c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300981500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2644-1322
IngestDate Mon Dec 08 04:16:32 EST 2025
Mon Jun 30 09:49:31 EDT 2025
Sat Nov 29 06:20:00 EST 2025
Wed Aug 27 02:02:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-c04e94775a1bd50e399ad46a33bdcd73caf5046ea8ffb5155d049aa6fa15a58c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1236-8318
0000-0001-5997-5169
0000-0002-7587-8905
0009-0004-4451-2275
0009-0007-0006-7781
OpenAccessLink https://doaj.org/article/76f3090173e242889fc53ff4c9789e67
PQID 3097922277
PQPubID 5075785
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_76f3090173e242889fc53ff4c9789e67
ieee_primary_10614789
proquest_journals_3097922277
crossref_primary_10_1109_OJSP_2024_3435673
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE open journal of signal processing
PublicationTitleAbbrev OJSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
ref10
Franceschi (ref13) 2019; 32
Gong (ref21) 2023
ref16
ref19
ref18
Nie (ref40) 2023
Mizrahi (ref9) 2024; 36
Woo (ref42) 2021
Tian (ref47) 2023
ref45
ref48
ref43
Cheng (ref20) 2023
ref49
ref8
ref7
Anguita (ref51) 2013; 3
ref4
ref3
ref5
Quinlan (ref6) 2014
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Dong (ref46) 2023
Malhotra (ref39) 2017
ref2
ref38
d. Maaten (ref52) 2008; 9
Bagnall (ref50) 2018
ref24
ref23
ref26
Fan (ref41) 2020
ref25
ref22
Hyvarinen (ref44) 2017
ref28
Tonekaboni (ref14) 2021
ref27
ref29
Wu (ref1) 2013
Zhang (ref17) 2022; 35
References_xml – ident: ref30
  doi: 10.1007/s11704-015-4478-2
– start-page: 558
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2013
  ident: ref1
  article-title: Dynamic covariance models for multivariate financial time series
– ident: ref37
  doi: 10.5555/3524938.3525087
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref52
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref23
  doi: 10.1007/s10618-014-0361-2
– ident: ref38
  doi: 10.1109/ICCV48922.2021.00986
– year: 2017
  ident: ref39
  article-title: TimeNet: Pre-trained deep recurrent neural network for time series classification
  publication-title: Esann
– ident: ref35
  doi: 10.1016/j.psychres.2021.114135
– ident: ref7
  doi: 10.1145/130385.130401
– ident: ref33
  doi: 10.1109/JIOT.2021.3098464
– ident: ref34
  doi: 10.1145/3394486.3403118
– ident: ref31
  doi: 10.1007/s10618-022-00844-1
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref29
  doi: 10.1007/s10618-020-00710-y
– ident: ref22
  doi: 10.1109/TGRS.2024.3409378
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref42
  article-title: Cost: Contrastive learning of disentangled seasonal-trend representations for time series forecasting
– start-page: 29996
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2023
  ident: ref46
  article-title: SimMTM: A simple pre-training framework for masked time-series modeling
– ident: ref19
  doi: 10.1145/3447548.3467401
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref14
  article-title: Unsupervised representation learning for time series with temporal neighborhood coding
– volume: 35
  start-page: 3988
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2022
  ident: ref17
  article-title: Self-supervised contrastive pre-training for time series via time-frequency consistency
– volume: 32
  start-page: 4652
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref13
  article-title: Unsupervised scalable representation learning for multivariate time series
– year: 2023
  ident: ref21
  article-title: PatchMixer: A patch-mixing architecture for long-term time series forecasting
  publication-title: arXiv:2310.00655
– ident: ref8
  doi: 10.1016/j.aiopen.2021.08.002
– volume: 3
  year: 2013
  ident: ref51
  article-title: A public domain dataset for human activity recognition using smartphones
  publication-title: Esann
– year: 2020
  ident: ref41
  article-title: Self-supervised time series representation learning by inter-intra relational reasoning
  publication-title: arXiv:2011.13548
– volume-title: C4. 5: Programs for Machine Learning
  year: 2014
  ident: ref6
– ident: ref45
  doi: 10.1609/aaai.v37i4.25575
– volume-title: Proc. 11th Int. Conf. Learn. Representations
  year: 2023
  ident: ref47
  article-title: Designing BERT for convolutional networks: Sparse and hierarchical masked modeling
– ident: ref43
  doi: 10.1145/3442381.3449903
– ident: ref11
  doi: 10.1109/ICSE48619.2023.00207
– ident: ref12
  doi: 10.1007/s11431-020-1647-3
– ident: ref4
  doi: 10.1109/TITS.2021.3125737
– volume: 36
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2024
  ident: ref9
  article-title: 4 M: Massively multimodal masked modeling
– ident: ref16
  doi: 10.1609/aaai.v36i8.20881
– ident: ref15
  doi: 10.24963/ijcai.2021/324
– ident: ref24
  doi: 10.1007/BF01074755
– ident: ref2
  doi: 10.1016/j.scitotenv.2018.10.344
– ident: ref48
  doi: 10.1109/CVPR52729.2023.01548
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2023
  ident: ref40
  article-title: A time series is worth 64 words: Long-term forecasting with transformers
– ident: ref3
  doi: 10.1109/TKDE.2020.3001195
– ident: ref18
  doi: 10.48550/arXiv.1810.04805
– ident: ref27
  doi: 10.1007/s10618-019-00617-3
– ident: ref5
  doi: 10.1109/TIT.1967.1053964
– ident: ref32
  doi: 10.1016/j.neunet.2021.01.001
– year: 2018
  ident: ref50
  article-title: The UEA multivariate time series classification archive, 2018
  publication-title: Statistics
– ident: ref26
  doi: 10.1007/s10618-020-00701-z
– start-page: 460
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  year: 2017
  ident: ref44
  article-title: Nonlinear ICA of temporally dependent stationary sources
– year: 2023
  ident: ref20
  article-title: TimeMAE: Self-supervised representations of time series with decoupled masked autoencoders
  publication-title: arXiv:2303.00320
– ident: ref28
  doi: 10.1109/ICDAR.1995.598994
– ident: ref49
  doi: 10.1109/CVPR52688.2022.01167
– ident: ref10
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref25
  doi: 10.1109/ICDM.2016.0133
SSID ssj0002511132
Score 2.2423368
Snippet In recent years, the use of time series analysis has become widespread, prompting researchers to explore methods to improve classification. Time series...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 964
SubjectTerms Classification
Computer architecture
Convolution
Convolutional neural networks
Decoders
Decoding
Effectiveness
Machine learning
Self-supervised learning
Task analysis
Time series
Time series analysis
Time series classification
time series pre-training
Transformers
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZoxQEOPIsaKMgHTkhud9fr17GtqCokSqWA1Jvl2GMUUSVRNsnvZ8brVkWIA7ddax-WPz--b-yZYexjcMgKUteLNqiEAkVHYVUyAlzCBQP5RteNySbM1ZW9uXHX1Vm9-MIAQDl8Bsd0Wfby0zJuyVR2UuSLsW6P7RmjR2ete4MKcWWUVnXnsm3cybcv02tUgF1_LJEUaCP_WHtKiP6aU-WvibisLhfP_7NeL9izSiP56Yj7S_YIFq_Y0wfBBV-z9RRus5huVzQbDJB4DaX6U5wFuiXnD07GMRh4SY1Jh4YKTnw3D_xyTq7JJVPKLZ-uUP8CP18udrWrYuHXMPyCJE63myVFw0ywPmA_Lj5_P78UNcOCiMgzNiI2PThERIV2llQDyFZC6nWQcpZiMjKGrFBAQ7A5zygZTEJBEYLOoVVB2SjfsP3FcgGHjCOz6W0MsbVR9cnqWdDRNRaHe-O6KNsJ-3TX9n41BtLwRYA0zhNQnoDyFagJOyN07h-kGNilAJvd1yHljc6yQTpjJCDPsNblqGTOfURh7ECbCTsgqB78bURpwo7uwPZ1wA4ev2Qc-QWbt_947R17QlUczS9HbH-z3sJ79jjuNvNh_aH0xd-RRt3d
  priority: 102
  providerName: IEEE
Title Self-Supervised Learning-Based Time Series Classification via Hierarchical Sparse Convolutional Masked-Autoencoder
URI https://ieeexplore.ieee.org/document/10614789
https://www.proquest.com/docview/3097922277
https://doaj.org/article/76f3090173e242889fc53ff4c9789e67
Volume 5
WOSCitedRecordID wos001300981500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2644-1322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511132
  issn: 2644-1322
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2644-1322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511132
  issn: 2644-1322
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQ4sAOiAHTCqzygdMkjySOY_vYIhCaBKtUJnGzXP-YKlBbNW2P_O17zzFTEQcuu0SKE8XJe35-3-f4vUfIhdWACnxVs9IKDwSlcUwJL1nQHhwG4I2q6opNyPt79fioR1ulvnBPWJceuBPcpWwiL8BpSR7AmyiloxM8xtoB_dGhSXHkhdRbZArnYATOwLPyb8yy0Je_fo5HQAer-gcHhNBI_sYRpXz9ucDKu1k5uZqbQ3KQMSIddO_2meyE2RH5tJU58Jgsx-E5svF6gabeBk9zntQ_bGjxFCM7KK58hZamupe4IygpgW6mlt5OMe44lUF5puMFkNtAr-azTR6H0Hhn26fg2WC9mmOqSx-WJ-T3zfXD1S3L5ROYAxCxYq6ogwZxC1tOvCgCQBHr68ZyPvHOS-5sFMCOg1UxTrDSiwe2YG0TbSmsUI5_Ibuz-Sx8JRRgS62cdaVyovaqmdjG6UKBLRe6crzske-vsjSLLkuGSeyi0AYFb1DwJgu-R4Yo7X83YoLr1ABqN1nt5iO198gJ6mqrN8AZcKlHzl-VZ7I1tgaeJDUG_crT_9H3GdnH7-kWYs7J7mq5Dt_Intuspu2ynwYiHO9ervspnPAvXLThPg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKiwQceLYiUMAHTkhud9f22j62FVWANlRKkXqzHHtcRa2SKJvk9zP2ulUR4sBt19qH5c-P7xt7Zgj57AyygtAIVjsZUKC0nmkZFAMTcMFAvtE0fbIJNRrpqytzUZzVsy8MAOTDZ3CQLvNefpj7dTKVHWb5orR5RHakEE3Vu2vdm1QSW0ZxVfYu68oc_vw-vkAN2IgDjrSgVfyP1ScH6S9ZVf6aivP6cvriP2v2kjwvRJIe9ci_Ilswe02ePQgv-IYsx3Ab2Xi9SPNBB4GWYKrX7Nil2-T-QZN5DDqak2OmY0MZKbqZOjqcJufknCvllo4XqICBnsxnm9JZsfDcdTcQ2NF6NU_xMAMsd8mv06-XJ0NWciwwj0xjxXwlwCAm0tWTICtAvuKCaB3nk-CD4t5FiRIanI5xktLBBJQUzrXR1dJJ7fke2Z7NZ_CWUOQ2Qnvna-2lCLqduNabSuOAr0zjeT0gX-7a3i76UBo2S5DK2ASUTUDZAtSAHCd07h9MUbBzATa7LYPKqjbyCgmN4oBMQ2sTveQxCo_S2ECrBmQ3QfXgbz1KA7J_B7YtQ7az-CVlkmeweveP1z6RJ8PL8zN79m304z15mqrbG2P2yfZquYYP5LHfrKbd8mPul78BPoLhJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Learning-Based+Time+Series+Classification+via+Hierarchical+Sparse+Convolutional+Masked-Autoencoder&rft.jtitle=IEEE+open+journal+of+signal+processing&rft.au=Yu%2C+Ting&rft.au=Xu%2C+Kele&rft.au=Wang%2C+Xu&rft.au=Ding%2C+Bo&rft.date=2024&rft.issn=2644-1322&rft.eissn=2644-1322&rft.volume=5&rft.spage=964&rft.epage=975&rft_id=info:doi/10.1109%2FOJSP.2024.3435673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJSP_2024_3435673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1322&client=summon