On unbounded and binary parameters in multi-parametric programming: applications to mixed-integer bilevel optimization and duality theory
In multi-parametric programming an optimization problem is solved as a function of certain parameters, where the parameters are commonly considered to be bounded and continuous. In this paper, we use the case of strictly convex multi-parametric quadratic programming (mp-QP) problems with affine cons...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 69; číslo 3; s. 587 - 606 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2017
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In multi-parametric programming an optimization problem is solved as a function of certain parameters, where the parameters are commonly considered to be bounded and continuous. In this paper, we use the case of strictly convex multi-parametric quadratic programming (mp-QP) problems with affine constraints to investigate problems where these conditions are not met. Based on the combinatorial solution approach for mp-QP problems featuring bounded and continuous parameters, we show that (i) for unbounded parameters, it is possible to obtain the multi-parametric solution if there exists one realization of the parameters for which the optimization problem can be solved and (ii) for binary parameters, we present the equivalent mixed-integer formulations for the application of the combinatorial algorithm. These advances are combined into a new, generalized version of the combinatorial algorithm for mp-QP problems, which enables the solution of problems featuring both unbounded and binary parameters. This novel approach is applied to mixed-integer bilevel optimization problems and the parametric solution of the dual of a convex problem. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-016-0463-z |