A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming

In this paper, we design an eigenvalue decomposition based branch-and-bound algorithm for finding global solutions of quadratically constrained quadratic programming (QCQP) problems. The hardness of nonconvex QCQP problems roots in the nonconvex components of quadratic terms, which are represented b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 73; číslo 2; s. 371 - 388
Hlavní autori: Lu, Cheng, Deng, Zhibin, Zhou, Jing, Guo, Xiaoling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 15.02.2019
Springer
Springer Nature B.V
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we design an eigenvalue decomposition based branch-and-bound algorithm for finding global solutions of quadratically constrained quadratic programming (QCQP) problems. The hardness of nonconvex QCQP problems roots in the nonconvex components of quadratic terms, which are represented by the negative eigenvalues and the corresponding eigenvectors in the eigenvalue decomposition. For certain types of QCQP problems, only very few eigenvectors, defined as sensitive-eigenvectors, determine the relaxation gaps. We propose a semidefinite relaxation based branch-and-bound algorithm to solve QCQP. The proposed algorithm, which branches on the directions of the sensitive-eigenvectors, is very efficient for solving certain types of QCQP problems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-018-0726-y