Impulsive semilinear differential inclusions: Topological structure of the solution set and solutions on non-compact domains

This paper deals with an impulsive Cauchy problem governed by the semilinear evolution differential inclusion x ′ ( t ) ∈ A ( t ) x ( t ) + F ( t , x ( t ) ) , where { A ( t ) } t ∈ [ 0 , b ] is a family of linear operators (not necessarily bounded) in a Banach space E generating an evolution operat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear analysis Ročník 69; číslo 1; s. 73 - 84
Hlavní autoři: Cardinali, Tiziana, Rubbioni, Paola
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.07.2008
Elsevier
Témata:
ISSN:0362-546X, 1873-5215
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with an impulsive Cauchy problem governed by the semilinear evolution differential inclusion x ′ ( t ) ∈ A ( t ) x ( t ) + F ( t , x ( t ) ) , where { A ( t ) } t ∈ [ 0 , b ] is a family of linear operators (not necessarily bounded) in a Banach space E generating an evolution operator and F is a Carathéodory type multifunction. First a theorem on the compactness of the set of all mild solutions for the problem is given. Then this result is applied to obtain the existence of mild solutions for the impulsive Cauchy problem defined on non-compact domains.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2007.05.001