Application of Methods of Ordinary Differential Equations to Global Inverse Function Theorems
We obtain a global inverse function theorem guaranteeing that if a smooth mapping of finite-dimensional spaces is uniformly nonsingular, then it has a smooth right inverse. Global implicit function theorems are obtained guaranteeing the existence and continuity of a global implicit function under th...
Uloženo v:
| Vydáno v: | Differential equations Ročník 55; číslo 4; s. 437 - 448 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.04.2019
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0012-2661, 1608-3083 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We obtain a global inverse function theorem guaranteeing that if a smooth mapping of finite-dimensional spaces is uniformly nonsingular, then it has a smooth right inverse. Global implicit function theorems are obtained guaranteeing the existence and continuity of a global implicit function under the condition that the mappings in question are uniformly nonsingular. The local Lipschitz property and the smoothness of the global implicit function are studied. The results are generalized to the case of mappings of Hilbert spaces. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0012-2661 1608-3083 |
| DOI: | 10.1134/S0012266119040013 |