Adaptive Interpolation Algorithm Based on a kd-Tree for Numerical Integration of Systems of Ordinary Differential Equations with Interval Initial Conditions

We consider issues related to the numerical solution of interval systems of ordinary differential equations. We suggest an algorithm that permits finding interval estimates of solutions with prescribed accuracy in reasonable time. The algorithm constructs an adaptive partition (a dynamic structured...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 54; číslo 7; s. 945 - 956
Hlavní autoři: Morozov, A. Yu, Reviznikov, D. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.07.2018
Springer
Springer Nature B.V
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider issues related to the numerical solution of interval systems of ordinary differential equations. We suggest an algorithm that permits finding interval estimates of solutions with prescribed accuracy in reasonable time. The algorithm constructs an adaptive partition (a dynamic structured grid) based on a kd-tree over the space formed by interval initial conditions for the ordinary differential equations. In the operation of the algorithm, a piecewise polynomial function interpolating the dependence of the solution on the specific values of interval parameters is constructed at each step of solution of the original problem. We prove that the global error estimate linearly depends on the height of the kd-tree. The algorithm is tested on several examples; the test results show its efficiency when solving problems of the class under study.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266118070121