Secure Transmission of Sources Over Noisy Channels With Side Information at the Receivers

This paper investigates the problem of source-channel coding for secure transmission with arbitrarily correlated side informations at both receivers. This scenario consists of an encoder (referred to as Alice) that wishes to compress a source and send it through a noisy channel to a legitimate recei...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 60; číslo 1; s. 713 - 739
Hlavní autoři: Villard, Joffrey, Piantanida, Pablo, Shamai, Shlomo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigates the problem of source-channel coding for secure transmission with arbitrarily correlated side informations at both receivers. This scenario consists of an encoder (referred to as Alice) that wishes to compress a source and send it through a noisy channel to a legitimate receiver (referred to as Bob). In this context, Alice must simultaneously satisfy the desired requirements on the distortion level at Bob and the equivocation rate at the eavesdropper (referred to as Eve). This setting can be seen as a generalization of the problems of secure source coding with (uncoded) side information at the decoders and the wiretap channel. A general outer bound on the rate-distortion-equivocation region, as well as an inner bound based on a pure digital scheme, is derived for arbitrary channels and side informations. In some special cases of interest, it is proved that this digital scheme is optimal and that separation holds. However, it is also shown through a simple counterexample with a binary source that a pure analog scheme can outperform the digital one while being optimal. According to these observations and assuming matched bandwidth, a novel hybrid digital/analog scheme that aims to gather the advantages of both digital and analog ones is then presented. In the quadratic Gaussian setup when side information is only present at the eavesdropper, this strategy is proved to be optimal. Furthermore, it outperforms both digital and analog schemes and cannot be achieved via time-sharing. Through an appropriate coding, the presence of any statistical difference among the side informations, the channel noises, and the distortion at Bob can be fully exploited in terms of secrecy.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2013.2288256