A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis

Conventional MR imaging explains only a fraction of the clinical outcome variance in multiple sclerosis. We aimed to evaluate machine learning models for disability prediction on the basis of radiomic, volumetric, and connectivity features derived from routine brain MR images.BACKGROUND AND PURPOSEC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of neuroradiology : AJNR Jg. 42; H. 11; S. 1927
Hauptverfasser: Pontillo, G, Tommasin, S, Cuocolo, R, Petracca, M, Petsas, N, Ugga, L, Carotenuto, A, Pozzilli, C, Iodice, R, Lanzillo, R, Quarantelli, M, Brescia Morra, V, Tedeschi, E, Pantano, P, Cocozza, S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.11.2021
ISSN:1936-959X, 1936-959X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional MR imaging explains only a fraction of the clinical outcome variance in multiple sclerosis. We aimed to evaluate machine learning models for disability prediction on the basis of radiomic, volumetric, and connectivity features derived from routine brain MR images.BACKGROUND AND PURPOSEConventional MR imaging explains only a fraction of the clinical outcome variance in multiple sclerosis. We aimed to evaluate machine learning models for disability prediction on the basis of radiomic, volumetric, and connectivity features derived from routine brain MR images.In this retrospective cross-sectional study, 3T brain MR imaging studies of patients with multiple sclerosis, including 3D T1-weighted and T2-weighted FLAIR sequences, were selected from 2 institutions. T1-weighted images were processed to obtain volume, connectivity score (inferred from the T2 lesion location), and texture features for an atlas-based set of GM regions. The site 1 cohort was randomly split into training (n = 400) and test (n = 100) sets, while the site 2 cohort (n = 104) constituted the external test set. After feature selection of clinicodemographic and MR imaging-derived variables, different machine learning algorithms predicting disability as measured with the Expanded Disability Status Scale were trained and cross-validated on the training cohort and evaluated on the test sets. The effect of different algorithms on model performance was tested using the 1-way repeated-measures ANOVA.MATERIALS AND METHODSIn this retrospective cross-sectional study, 3T brain MR imaging studies of patients with multiple sclerosis, including 3D T1-weighted and T2-weighted FLAIR sequences, were selected from 2 institutions. T1-weighted images were processed to obtain volume, connectivity score (inferred from the T2 lesion location), and texture features for an atlas-based set of GM regions. The site 1 cohort was randomly split into training (n = 400) and test (n = 100) sets, while the site 2 cohort (n = 104) constituted the external test set. After feature selection of clinicodemographic and MR imaging-derived variables, different machine learning algorithms predicting disability as measured with the Expanded Disability Status Scale were trained and cross-validated on the training cohort and evaluated on the test sets. The effect of different algorithms on model performance was tested using the 1-way repeated-measures ANOVA.The selection procedure identified the 9 most informative variables, including age and secondary-progressive course and a subset of radiomic features extracted from the prefrontal cortex, subcortical GM, and cerebellum. The machine learning models predicted disability with high accuracy (r approaching 0.80) and excellent intra- and intersite generalizability (r ≥ 0.73). The machine learning algorithm had no relevant effect on the performance.RESULTSThe selection procedure identified the 9 most informative variables, including age and secondary-progressive course and a subset of radiomic features extracted from the prefrontal cortex, subcortical GM, and cerebellum. The machine learning models predicted disability with high accuracy (r approaching 0.80) and excellent intra- and intersite generalizability (r ≥ 0.73). The machine learning algorithm had no relevant effect on the performance.The multidimensional analysis of brain MR images, including radiomic features and clinicodemographic data, is highly informative of the clinical status of patients with multiple sclerosis, representing a promising approach to bridge the gap between conventional imaging and disability.CONCLUSIONSThe multidimensional analysis of brain MR images, including radiomic features and clinicodemographic data, is highly informative of the clinical status of patients with multiple sclerosis, representing a promising approach to bridge the gap between conventional imaging and disability.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-959X
1936-959X
DOI:10.3174/ajnr.A7274