Complexity of necessary efficiency in interval linear programming and multiobjective linear programming

We present some complexity results on checking necessary efficiency in interval multiobjective linear programming. Supposing that objective function coefficients perturb within prescribed intervals, a feasible point x * is called necessarily efficient if it is efficient for all instances of interval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 6; H. 5; S. 893 - 899
1. Verfasser: Hladík, Milan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.06.2012
Schlagworte:
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present some complexity results on checking necessary efficiency in interval multiobjective linear programming. Supposing that objective function coefficients perturb within prescribed intervals, a feasible point x * is called necessarily efficient if it is efficient for all instances of interval data. We show that the problem of checking necessary efficiency is co-NP-complete even for the case of only one objective. Provided that x * is a non-degenerate basic solution, the problem is polynomially solvable for one objective, but remains co-NP-hard in the general case. Some open problems are mentioned at the end of the paper.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-011-0315-1