Complexity of necessary efficiency in interval linear programming and multiobjective linear programming

We present some complexity results on checking necessary efficiency in interval multiobjective linear programming. Supposing that objective function coefficients perturb within prescribed intervals, a feasible point x * is called necessarily efficient if it is efficient for all instances of interval...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 6; číslo 5; s. 893 - 899
Hlavný autor: Hladík, Milan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.06.2012
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present some complexity results on checking necessary efficiency in interval multiobjective linear programming. Supposing that objective function coefficients perturb within prescribed intervals, a feasible point x * is called necessarily efficient if it is efficient for all instances of interval data. We show that the problem of checking necessary efficiency is co-NP-complete even for the case of only one objective. Provided that x * is a non-degenerate basic solution, the problem is polynomially solvable for one objective, but remains co-NP-hard in the general case. Some open problems are mentioned at the end of the paper.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-011-0315-1