Greedy Sparse RLS

Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 60; číslo 5; s. 2194 - 2207
Hlavní autoři: Dumitrescu, B., Onose, A., Helin, P., Tabus, I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the -norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade.
AbstractList Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the -norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade.
Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the [ell] 1 -norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade.
Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm belongs to the exponentially windowed recursive least squares (RLS) family and maintains a partial orthogonal factorization with pivoting of the system matrix. For complexity reasons, the permutations that bring the relevant columns into the first positions are restrained mainly to interchanges between neighbors at each time moment. The storage scheme allows the computation of the exact factorization, implicitly working on indefinitely long vectors. The sparsity level of the solution, i.e., the number of nonzero elements, is estimated using information theoretic criteria, in particular Bayesian information criterion (BIC) and predictive least squares. We present simulations showing that, for identifying sparse time-varying FIR channels, our algorithm is consistently better than previous sparse RLS methods based on the [Formula Omitted]-norm regularization of the RLS criterion. We also use our sparse greedy RLS algorithm for computing linear predictions in a lossless audio coding scheme and obtain better compression than MPEG4 ALS using an RLS-LMS cascade.
Author Helin, P.
Tabus, I.
Dumitrescu, B.
Onose, A.
Author_xml – sequence: 1
  givenname: B.
  surname: Dumitrescu
  fullname: Dumitrescu, B.
  email: bogdan.dumitrescu@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 2
  givenname: A.
  surname: Onose
  fullname: Onose, A.
  email: alexandru.onose@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 3
  givenname: P.
  surname: Helin
  fullname: Helin, P.
  email: petri.helin@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 4
  givenname: I.
  surname: Tabus
  fullname: Tabus, I.
  email: ioan.tabus@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25790814$$DView record in Pascal Francis
BookMark eNp9kD1LA0EURQeJYIwWdoJNQASbjfMm81lK0CgEFBPBbpidfQsbNrtxZlPk3zsh0SKF1bvFuZfHOSe9pm2QkGugIwBqHhbz9xGjwEYMtGJanJA-GA4Z5Ur2UqZinAmtvs7IeYxLSoFzI_vkahoQi-1wvnYh4vBjNr8gp6WrI14e7oB8Pj8tJi_Z7G36OnmcZX4seJcVTCNT3OsUQPCCl9z5XOTaO1WaojCSq0Iqx6gTRiFgzmXOmZagBVCVjwfkfr-7Du33BmNnV1X0WNeuwXYTLVDGtKFCsoTeHqHLdhOa9F2iKCRKSZmouwPlond1GVzjq2jXoVq5sLVMKEM18MTJPedDG2PA0vqqc13VNl1wVZ0m7c6oTUbtzqg9GE1FelT83f6ncrOvVIj4h0sQkDSMfwCpjX6D
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_dsp_2015_02_018
crossref_primary_10_1109_JSEN_2014_2364594
crossref_primary_10_1109_TSP_2013_2257763
crossref_primary_10_1016_j_sigpro_2016_04_013
crossref_primary_10_1007_s00034_015_0098_1
crossref_primary_10_1016_j_compmedimag_2015_03_006
crossref_primary_10_1109_LSP_2020_3000459
crossref_primary_10_1109_TSP_2016_2539138
crossref_primary_10_1109_TNNLS_2013_2296048
crossref_primary_10_1109_TSP_2015_2512560
crossref_primary_10_1109_TGRS_2021_3139355
crossref_primary_10_1007_s00034_025_03327_y
crossref_primary_10_1016_j_sigpro_2014_03_048
crossref_primary_10_1109_TSP_2019_2907257
crossref_primary_10_1016_j_sigpro_2013_05_001
crossref_primary_10_1109_TSP_2015_2421472
crossref_primary_10_1109_TSP_2015_2436369
crossref_primary_10_1109_ACCESS_2020_3032688
crossref_primary_10_1109_LSP_2021_3127467
crossref_primary_10_1177_1729881416662537
crossref_primary_10_1109_TVT_2016_2533664
crossref_primary_10_1109_TSP_2013_2258340
crossref_primary_10_3390_s140917516
Cites_doi 10.1109/89.861368
10.1016/j.sigpro.2009.07.011
10.1109/TASL.2007.911675
10.1109/SARNOF.2005.1426532
10.1007/978-0-387-68812-1
10.1109/TASL.2008.2010156
10.1109/TSP.2002.800414
10.1080/00207178908953472
10.1109/ICASSP.2011.5947208
10.1109/TAC.1985.1103818
10.1137/060657704
10.1109/TSP.2010.2048103
10.1214/aos/1176344136
10.1109/LSP.2002.1001652
10.1109/TSP.2010.2090874
10.1111/j.2517-6161.1989.tb01759.x
10.1016/j.sigpro.2011.02.013
10.2307/3214342
10.1016/j.sigpro.2005.09.015
10.1109/ACSSC.2000.911292
10.1109/TSP.2010.2044841
10.1109/TSP.2010.2046897
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2012.2187285
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 2207
ExternalDocumentID 2636180731
25790814
10_1109_TSP_2012_2187285
6151185
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c354t-d28e274c8d28154d4f4acb5b8ca7f9dd9647d67a20a597e1eb46b4286185107b3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302938800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Thu Oct 02 06:56:45 EDT 2025
Mon Jun 30 10:21:25 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Sat Nov 29 04:10:23 EST 2025
Tue Nov 18 22:20:45 EST 2025
Tue Aug 26 16:56:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords channel identification
Time variable channel
Lossless circuit
Audio signal processing
Adaptive algorithm
Adaptive algorithms
Acoustic signal processing
Recursive algorithm
Factorization
Linear prediction
Audio coding
Linear system
Simulation
sparse filters
Least squares method
On line processing
orthogonal least squares
Greedy algorithm
Recursive method
Signal processing
Least mean squares methods
Information theory
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-d28e274c8d28154d4f4acb5b8ca7f9dd9647d67a20a597e1eb46b4286185107b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1001890766
PQPubID 85478
PageCount 14
ParticipantIDs proquest_journals_1001890766
ieee_primary_6151185
pascalfrancis_primary_25790814
proquest_miscellaneous_1022890562
crossref_citationtrail_10_1109_TSP_2012_2187285
crossref_primary_10_1109_TSP_2012_2187285
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
hannan (ref23) 1989; 51
ref11
ref10
ref2
rocha (ref16) 2007
ref1
ref19
rissanen (ref17) 2007
dumitrescu (ref18) 2010
chen (ref6) 2009
ref24
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref2
  doi: 10.1109/89.861368
– ident: ref20
  doi: 10.1016/j.sigpro.2009.07.011
– ident: ref25
  doi: 10.1109/TASL.2007.911675
– start-page: 63
  year: 2007
  ident: ref16
  article-title: Greedy and relaxed approximations to model selection: A simulation study
  publication-title: Festschrift in Honor of Jorma Rissannen on the Occasion of His 75th Birthday
– ident: ref12
  doi: 10.1109/SARNOF.2005.1426532
– year: 2007
  ident: ref17
  publication-title: Information and Complexity in Statistical Modeling
  doi: 10.1007/978-0-387-68812-1
– ident: ref5
  doi: 10.1109/TASL.2008.2010156
– ident: ref3
  doi: 10.1109/TSP.2002.800414
– ident: ref14
  doi: 10.1080/00207178908953472
– ident: ref19
  doi: 10.1109/ICASSP.2011.5947208
– ident: ref21
  doi: 10.1109/TAC.1985.1103818
– ident: ref1
  doi: 10.1137/060657704
– ident: ref8
  doi: 10.1109/TSP.2010.2048103
– ident: ref24
  doi: 10.1214/aos/1176344136
– ident: ref15
  doi: 10.1109/LSP.2002.1001652
– start-page: 1484
  year: 2010
  ident: ref18
  article-title: Greedy RLS for sparse filters
  publication-title: Eur Signal Process Conf (EUSIPCO)
– ident: ref9
  doi: 10.1109/TSP.2010.2090874
– volume: 51
  start-page: 217
  year: 1989
  ident: ref23
  article-title: Recursive estimation of autoregressions
  publication-title: J Royal Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1989.tb01759.x
– ident: ref10
  doi: 10.1016/j.sigpro.2011.02.013
– ident: ref22
  doi: 10.2307/3214342
– start-page: 3125
  year: 2009
  ident: ref6
  article-title: Sparse LMS for system identification
  publication-title: Int Conf Acoust Speech Signal Process
– ident: ref4
  doi: 10.1016/j.sigpro.2005.09.015
– ident: ref11
  doi: 10.1109/ACSSC.2000.911292
– ident: ref13
  doi: 10.1109/TSP.2010.2044841
– ident: ref7
  doi: 10.1109/TSP.2010.2046897
SSID ssj0014496
Score 2.2383993
Snippet Starting from the orthogonal (greedy) least squares method, we build an adaptive algorithm for finding online sparse solutions to linear systems. The algorithm...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2194
SubjectTerms Adaptive algorithms
Algorithms
Applied sciences
Approximation algorithms
audio coding
channel identification
Channels
Coding, codes
Computation
Construction
Criteria
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Factorization
Information theory
Information, signal and communications theory
Least squares approximation
Least squares method
Matching pursuit algorithms
Mathematical models
Miscellaneous
orthogonal least squares
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
sparse filters
Studies
Telecommunications and information theory
Vectors
Title Greedy Sparse RLS
URI https://ieeexplore.ieee.org/document/6151185
https://www.proquest.com/docview/1001890766
https://www.proquest.com/docview/1022890562
Volume 60
WOSCitedRecordID wos000302938800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM-6HSK1Tkq-CLYfWRpkj6KOHwYY7gpeytNmoIg3diH4H_vXduViSL4UAgkpccll7tf7wvgRgdcKJZITwqLAEUl2tM-5coo7pMbpp9kuTCvQzkaqdksGFfgrsyFsdZmwWe2TcPMlx_PzYZ-lXVI-6J-qUJVSpHnapUeA86zXlxoLvQ9X8nZ1iXZDTrTyZhiuFgb1Zlk1DV5RwVlPVUoIjJaIVOSvJvFj4s50zaDo__RWYfDwqp07_NjcAwVm57AwU6twQbUKcIm_nQnC4Sy1n0eTk7hZfA4fXjyin4Inun7fO3FTFkEkUbhAC2fmCc8MtrXykQyCeKYkkpjISPWjRAm2J7VXGiEFwJpQZSn-2dQS-epPQdXoBjGiqFtGGmOd69mxvrSCI0ijg93oLNlUWiKYuHUs-I9zEBDNwiRqSExNSyY6sBt-cYiL5Txx9oGMa1cV_DLgda3XSjn8VoJ0HRBqprbbQkLUVtR0eWeQogvhAPX5TQKCXk-otTON7SGkUMVbb2L3z99CftEYB7J2ITaermxV7BnPtZvq2UrO2lflGTMWQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHnU5xOmcFXwS7jyxN00cRx8Q5hpuyt9KkKQjSjX0I_vfetV2ZKIIPhUBSelxyufv1vgCulMeFZJFru8IgQJGRspVDuTKSO-SGaUdJLsxrz-335XjsDQpwk-fCGGOS4DNTp2Hiyw8nekm_yhqkfVG_bMCmwzlrptlauc-A86QbFxoMbduR7njllGx6jdFwQFFcrI4KzWXUN3lNCSVdVSgmMpgjW6K0n8WPqznRN539_1Fagr3MrrRu04NwAAUTH8LuWrXBMpQoxib8tIZTBLPGeu4Nj-Clcz-669pZRwRbtx2-sEMmDcJILXGAtk_IIx5o5SipAzfywpDSSkPhBqwZIFAwLaO4UAgwBNKCOE-1j6EYT2JzApZAQQwlQ-swUBxvX8W0cVwtFAo5PrwCjRWLfJ2VC6euFe9-Ahuano9M9YmpfsbUClznb0zTUhl_rC0T0_J1Gb8qUPu2C_k8XiweGi9IVXW1LX4mbHMqu9ySCPKFqMBlPo1iQr6PIDaTJa1h5FJFa-_0909fwHZ39NTzew_9xzPYIWLTuMYqFBezpTmHLf2xeJvPasmp-wJiWc-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+Sparse+RLS&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Dumitrescu%2C+Bogdan&rft.au=Onose%2C+Alexandru&rft.au=Helin%2C+Petri&rft.au=Tabus%2C+Ioan&rft.date=2012-05-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=60&rft.issue=5&rft.spage=2194&rft.epage=2207&rft_id=info:doi/10.1109%2FTSP.2012.2187285&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon