Optimal per-edge processing times in the semi-streaming model
We present semi-streaming algorithms for basic graph problems that have optimal per-edge processing times and therefore surpass all previous semi-streaming algorithms for these tasks. The semi-streaming model, which is appropriate when dealing with massive graphs, forbids random access to the input...
Uloženo v:
| Vydáno v: | Information processing letters Ročník 104; číslo 3; s. 106 - 112 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
31.10.2007
Elsevier Science Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present semi-streaming algorithms for basic graph problems that have optimal per-edge processing times and therefore surpass all previous semi-streaming algorithms for these tasks. The semi-streaming model, which is appropriate when dealing with massive graphs, forbids random access to the input and restricts the memory to
O
(
n
⋅
polylog
n
)
bits.
Particularly, the formerly best per-edge processing times for finding the connected components and a bipartition are
O
(
α
(
n
)
)
, for determining
k-vertex and
k-edge connectivity
O
(
k
2
n
)
and
O
(
n
⋅
log
n
)
respectively for any constant
k and for computing a minimum spanning forest
O
(
log
n
)
. All these time bounds we reduce to
O
(
1
)
.
Every presented algorithm determines a solution asymptotically as fast as the best corresponding algorithm up to date in the classical RAM model, which therefore cannot convert the advantage of unlimited memory and random access into superior computing times for these problems. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2007.06.004 |