A line vortex in a two-fluid system

This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overtu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics Jg. 84; H. 1; S. 181 - 199
Hauptverfasser: Forbes, Lawrence K., Cosgrove, Jason M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.02.2014
Schlagworte:
ISSN:0022-0833, 1573-2703
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the classical problem of a line vortex in planar flow of a fluid. However, an interface is present at some finite radius from the line vortex, and beyond that is a second fluid of different density. The interface is therefore subject to shearing-type instabilities and may overturn as time progresses. A linearized inviscid theory is developed and reveals unstable behaviours, dependent on the parameters in the system. The non-linear inviscid problem is solved by a spectral method, and high-frequency modes are regularized by a type of filtering. In addition, a Boussinesq viscous model is presented and allows the overturning interface to fold. Results are discussed and compared with the predictions of the inviscid theory.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-012-9606-5