Lipschitz stability for generalized ordinary differential equations and impulsive retarded differential equations

We consider a class of retarded functional differential equations with preassigned moments of impulsive effect and we study the Lipschitz stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of va...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic journal of qualitative theory of differential equations Ročník 2019; číslo 18; s. 1 - 18
Hlavní autoři: Afonso, Suzete, da Silva, Márcia
Médium: Journal Article
Jazyk:angličtina
Vydáno: University of Szeged 01.01.2019
Témata:
ISSN:1417-3875, 1417-3875
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a class of retarded functional differential equations with preassigned moments of impulsive effect and we study the Lipschitz stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational Lipschitz stability and Lipschitz stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be variationally Lipschitz stable. Thereby, we apply the results to get the corresponding ones for impulsive functional differential equations.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2019.1.18