Asynchronous Distributed Downlink Beamforming and Power Control in Multi-Cell Networks

In this paper, we consider a multi-cell network where every base station (BS) serves multiple users with an antenna array. Each user is associated with only one BS and has a single antenna. Assume that only long-term channel state information (CSI) is available in the system. The objective is to min...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 13; no. 7; pp. 3892 - 3902
Main Authors: Shen, Siduo, Lok, Tat-Ming
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.07.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider a multi-cell network where every base station (BS) serves multiple users with an antenna array. Each user is associated with only one BS and has a single antenna. Assume that only long-term channel state information (CSI) is available in the system. The objective is to minimize the network downlink transmission power needed to meet the users' signal-to-interference-plus-noise ratio (SINR) requirements. For this objective, we propose an asynchronous distributed beamforming and power control algorithm, which provides the same optimal solution as given by centralized algorithms. To design the algorithm, the power minimization problem is formulated mathematically as a non-convex problem. For distributed implementation, the non-convex problem is cast into the dual decomposition framework. Resorting to the theory about matrix pencil, a novel asynchronous iterative method is proposed for solving the dual of the non-convex problem. The methods for beamforming and power control are obtained by investigating the primal problem. Finally, simulation results are provided to demonstrate the convergence and performance of the algorithm.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2014.2318042