A running time analysis of an Ant Colony Optimization algorithm for shortest paths in directed acyclic graphs
In this paper, we prove polynomial running time bounds for an Ant Colony Optimization (ACO) algorithm for the single-destination shortest path problem on directed acyclic graphs. More specifically, we show that the expected number of iterations required for an ACO-based algorithm with n ants is O (...
Uloženo v:
| Vydáno v: | Information processing letters Ročník 105; číslo 3; s. 88 - 92 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
31.01.2008
Elsevier Science Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we prove polynomial running time bounds for an Ant Colony Optimization (ACO) algorithm for the single-destination shortest path problem on directed acyclic graphs. More specifically, we show that the expected number of iterations required for an ACO-based algorithm with
n ants is
O
(
1
ρ
n
2
m
log
n
)
for graphs with
n nodes and
m edges, where
ρ is an evaporation rate. This result can be modified to show that an ACO-based algorithm for One-Max with multiple ants converges in expected
O
(
1
ρ
n
2
log
n
)
iterations, where
n is the number of variables. This result stands in sharp contrast with that of Neumann and Witt, where a
single-ant algorithm is shown to require an exponential running time if
ρ
=
O
(
n
−
1
−
ε
)
for any
ε
>
0
. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2007.08.013 |