Analysis of a stochastic approximation algorithm for computing quasi-stationary distributions

We study the convergence properties of a Monte Carlo estimator proposed in the physics literature to compute the quasi-stationary distribution on a transient set of a Markov chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)). Using the theory of stochastic approximati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in applied probability Ročník 48; číslo 3; s. 792 - 811
Hlavní autoři: Blanchet, J., Glynn, P., Zheng, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.09.2016
Applied Probability Trust
Témata:
ISSN:0001-8678, 1475-6064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the convergence properties of a Monte Carlo estimator proposed in the physics literature to compute the quasi-stationary distribution on a transient set of a Markov chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)). Using the theory of stochastic approximations we verify the consistency of the estimator and obtain an associated central limit theorem. We provide an example showing that convergence might occur very slowly if a certain eigenvalue condition is violated. We alleviate this problem using an easy-to-implement projection step combined with averaging.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2016.28