Analysis of a stochastic approximation algorithm for computing quasi-stationary distributions

We study the convergence properties of a Monte Carlo estimator proposed in the physics literature to compute the quasi-stationary distribution on a transient set of a Markov chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)). Using the theory of stochastic approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability Jg. 48; H. 3; S. 792 - 811
Hauptverfasser: Blanchet, J., Glynn, P., Zheng, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.09.2016
Applied Probability Trust
Schlagworte:
ISSN:0001-8678, 1475-6064
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convergence properties of a Monte Carlo estimator proposed in the physics literature to compute the quasi-stationary distribution on a transient set of a Markov chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)). Using the theory of stochastic approximations we verify the consistency of the estimator and obtain an associated central limit theorem. We provide an example showing that convergence might occur very slowly if a certain eigenvalue condition is violated. We alleviate this problem using an easy-to-implement projection step combined with averaging.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2016.28