Finding a Path Subject to Many Additive QoS Constraints
A fundamental problem in quality-of-service (QoS) routing is to find a path between a source-destination node pair that satisfies two or more end-to-end QoS constraints. We model this problem using a graph with n vertices and m edges with K additive QoS parameters associated with each edge, for any...
Uloženo v:
| Vydáno v: | IEEE/ACM transactions on networking Ročník 15; číslo 1; s. 201 - 211 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-6692, 1558-2566 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A fundamental problem in quality-of-service (QoS) routing is to find a path between a source-destination node pair that satisfies two or more end-to-end QoS constraints. We model this problem using a graph with n vertices and m edges with K additive QoS parameters associated with each edge, for any constant Kges2. This problem is known to be NP-hard. Fully polynomial time approximation schemes (FPTAS) for the case of K=2 have been reported in the literature. We concentrate on the general case and make the following contributions. 1) We present a very simple (Km+nlogn) time K-approximation algorithm that can be used in hop-by-hop routing protocols. 2) We present an FPTAS for one optimization version of the QoS routing problem with a time complexity of O(m(n/epsi) K-1 ). 3) We present an FPTAS for another optimization version of the QoS routing problem with a time complexity of O(nlogn+m(H/epsi) K-1 ) when there exists an H-hop path satisfying all QoS constraints. When K is reduced to 2, our results compare favorably with existing algorithms. The results of this paper hold for both directed and undirected graphs. For ease of presentation, undirected graph is used |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 1063-6692 1558-2566 |
| DOI: | 10.1109/TNET.2006.890089 |