A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters Optimization

The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in energy research Ročník 10
Hlavní autoři: Xiong, Xiong, Guo, Xiaojie, Zeng, Pingliang, Zou, Ruiling, Wang, Xiaolong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 10.05.2022
Témata:
ISSN:2296-598X, 2296-598X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms. Compared to the XGBoost, SVM, KELM, and LSTM, the results indicate that BH-XGBoost outperforms other methods in all the cases. The BH-XGBoost method could yield a more minor estimated error than the other methods, especially in the cases of wind ramp events caused by extreme weather conditions and low wind speed range. The comparison results led to the recommendation that the BH-XGBoost method is an effective method to forecast the short-term wind power for wind farms.
AbstractList The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms. Compared to the XGBoost, SVM, KELM, and LSTM, the results indicate that BH-XGBoost outperforms other methods in all the cases. The BH-XGBoost method could yield a more minor estimated error than the other methods, especially in the cases of wind ramp events caused by extreme weather conditions and low wind speed range. The comparison results led to the recommendation that the BH-XGBoost method is an effective method to forecast the short-term wind power for wind farms.
The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms. Compared to the XGBoost, SVM, KELM, and LSTM, the results indicate that BH-XGBoost outperforms other methods in all the cases. The BH-XGBoost method could yield a more minor estimated error than the other methods, especially in the cases of wind ramp events caused by extreme weather conditions and low wind speed range. The comparison results led to the recommendation that the BH-XGBoost method is an effective method to forecast the short-term wind power for wind farms.
Author Xiong, Xiong
Zeng, Pingliang
Wang, Xiaolong
Guo, Xiaojie
Zou, Ruiling
Author_xml – sequence: 1
  givenname: Xiong
  surname: Xiong
  fullname: Xiong, Xiong
– sequence: 2
  givenname: Xiaojie
  surname: Guo
  fullname: Guo, Xiaojie
– sequence: 3
  givenname: Pingliang
  surname: Zeng
  fullname: Zeng, Pingliang
– sequence: 4
  givenname: Ruiling
  surname: Zou
  fullname: Zou, Ruiling
– sequence: 5
  givenname: Xiaolong
  surname: Wang
  fullname: Wang, Xiaolong
BookMark eNp1kF9LwzAUxYNMcM59AN_yBTrTpGmSxzncH5hMceLeQpKmW8bajDQo89PbbQoi-HQvh3sO5_6uQaf2tQXgNkUDQri4K20d1gOMMB4IRFNKL0AXY5EnVPBV59d-BfpNs0UIpQTTLEVd8DyELxsfYrK0oYJvri7gk_-wAY59sEY1ET7auPEFfHcKrib33rfS9LC3IXlSQVU22tDAxT66yn2q6Hx9Ay5LtWts_3v2wOv4YTmaJvPFZDYazhNDaBYTRQliItNFrnluSVuGMENKozUqCmE0ZZQJnSGF8jJleSaY4RnXlGrTnlJEemB2zi282sp9cJUKB-mVkyfBh7VUITqzs9KUiPPCMqaVzTTlgpZEY2ZyxNskitssds4ywTdNsKU0Lp6-iUG5nUyRPIKWJ9DyCFqeQbfO9I_zp8n_ni-i1INW
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3395512
crossref_primary_10_3390_en18071800
crossref_primary_10_3390_en15134670
crossref_primary_10_1016_j_energy_2025_138538
crossref_primary_10_1038_s41598_025_13140_x
crossref_primary_10_1038_s41612_025_01166_x
crossref_primary_10_1016_j_ecoenv_2023_114806
crossref_primary_10_1016_j_scs_2025_106593
crossref_primary_10_3390_app14020901
crossref_primary_10_1177_14759217251329167
crossref_primary_10_1016_j_neucom_2025_131308
crossref_primary_10_3390_en16052094
crossref_primary_10_3390_su16104099
crossref_primary_10_1016_j_energy_2024_132941
crossref_primary_10_1016_j_jece_2025_118564
crossref_primary_10_1016_j_apenergy_2024_124273
crossref_primary_10_3390_su16198497
crossref_primary_10_1016_j_energy_2023_128289
crossref_primary_10_1016_j_tust_2025_107025
crossref_primary_10_1016_j_energy_2024_130402
crossref_primary_10_3390_rs15030667
crossref_primary_10_1038_s41598_025_98224_4
crossref_primary_10_3390_foods13091420
crossref_primary_10_3390_en17215304
crossref_primary_10_1007_s10462_025_11140_x
crossref_primary_10_1016_j_ijepes_2025_110732
crossref_primary_10_1002_ps_70112
crossref_primary_10_1016_j_lwt_2022_114015
crossref_primary_10_1016_j_inffus_2025_103541
crossref_primary_10_3390_app14188317
crossref_primary_10_3390_app14146314
crossref_primary_10_3390_f16030384
crossref_primary_10_1088_1742_6596_2418_1_012069
crossref_primary_10_3390_app15137615
crossref_primary_10_1016_j_aosl_2025_100590
crossref_primary_10_3389_fenrg_2023_1218603
crossref_primary_10_1142_S2630534824500025
crossref_primary_10_1016_j_asoc_2024_111669
crossref_primary_10_1016_j_enbuild_2025_115832
crossref_primary_10_3389_fenvs_2024_1534113
crossref_primary_10_1108_DTA_07_2023_0377
crossref_primary_10_1038_s41598_025_91450_w
crossref_primary_10_3390_pr13061763
crossref_primary_10_1016_j_aosl_2023_100339
crossref_primary_10_3390_en15239146
crossref_primary_10_3390_en18164393
crossref_primary_10_3390_en17061270
crossref_primary_10_1109_ACCESS_2024_3385643
crossref_primary_10_1016_j_ijepes_2025_110833
crossref_primary_10_1093_ce_zkad043
crossref_primary_10_1038_s41598_024_80513_z
crossref_primary_10_1016_j_biortech_2024_130364
crossref_primary_10_1063_5_0221646
crossref_primary_10_3390_app14083512
Cites_doi 10.1177/0309524x20941203
10.1109/TSTE.2017.2723907
10.3390/en13153764
10.1109/TNNLS.2019.2956195
10.1016/j.knosys.2019.04.019
10.1049/iet-gtd.2017.1638
10.3390/en10081168
10.1016/j.compeleceng.2014.07.009
10.1016/j.ijepes.2019.105814
10.1007/s10489-021-02191-y
10.1007/s40565-018-0398-0
10.1109/TVT.2021.3138959
10.1007/978-3-030-05318-5_4
10.1016/j.renene.2019.07.067
10.1002/eng2.12178
10.1177/0309524x19891672
10.1016/j.ijepes.2020.106041
10.1109/access.2017.2716353
10.1016/j.knosys.2020.106602
10.3390/app9153019
10.1016/j.apenergy.2019.01.063
10.3934/jimo.2016029
10.1109/access.2019.2901920
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2022.905155
DatabaseName CrossRef
DOAJ Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_cf088de77bae4b5895f3b27c60835052
10_3389_fenrg_2022_905155
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c354t-a530794bd6b86e341037c3fcbb0dd9cb57579b40a06f176497c848b55bc103503
IEDL.DBID DOA
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000803871900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-598X
IngestDate Fri Oct 03 12:44:09 EDT 2025
Tue Nov 18 21:18:53 EST 2025
Sat Nov 29 04:19:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-a530794bd6b86e341037c3fcbb0dd9cb57579b40a06f176497c848b55bc103503
OpenAccessLink https://doaj.org/article/cf088de77bae4b5895f3b27c60835052
ParticipantIDs doaj_primary_oai_doaj_org_article_cf088de77bae4b5895f3b27c60835052
crossref_citationtrail_10_3389_fenrg_2022_905155
crossref_primary_10_3389_fenrg_2022_905155
PublicationCentury 2000
PublicationDate 2022-05-10
PublicationDateYYYYMMDD 2022-05-10
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-10
  day: 10
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Li (B9); 118
Yoo (B21) 2019; 178
Huang (B4) 2021; 51
Liu (B10) 2018; 6
Zhang (B24) 2021; 71
Kotthoff (B6) 2019
Zhou (B27) 2017; 13
Maldonado-Correa (B11) 2021; 45
Ju (B5) 2019; 7
Zheng (B26) 2017; 10
Zameer (B22) 2015; 45
Han (B1) 2018; 12
Wang (B18) 2021; 223
Zheng (B25) 2019; 9
Tian (B17) 2021; 45
Zhang (B23) 2017; 5
Hao (B3) 2019; 238
Kumar (B7) 2020
Li (B8)
Quan (B13) 2019; 31
Phan (B12) 2020
Hanifi (B2) 2020; 13
Wang (B19) 2017; 9
Yang (B20) 2019
Rodríguez (B14) 2020; 145
Santhosh (B15) 2020; 2
Sideratos (B16) 2020; 120
References_xml – volume: 45
  start-page: 1374
  year: 2021
  ident: B17
  article-title: A State-Of-The-Art Review on Wind Power Deterministic Prediction
  publication-title: Wind Eng.
  doi: 10.1177/0309524x20941203
– volume: 9
  start-page: 199
  year: 2017
  ident: B19
  article-title: Optimal Wind Power Uncertainty Intervals for Electricity Market Operation
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2723907
– start-page: 1
  year: 2019
  ident: B20
  article-title: Application of Xgboost in Identification of Power Quality Disturbance Source of Steady-State Disturbance Events
– volume: 13
  start-page: 3764
  year: 2020
  ident: B2
  article-title: A Critical Review of Wind Power Forecasting Methods-Past, Present and Future
  publication-title: Energies
  doi: 10.3390/en13153764
– volume: 31
  start-page: 4582
  year: 2019
  ident: B13
  article-title: A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids
  publication-title: IEEE Trans. neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2956195
– volume: 178
  start-page: 74
  year: 2019
  ident: B21
  article-title: Hyperparameter Optimization of Deep Neural Network Using Univariate Dynamic Encoding Algorithm for Searches
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2019.04.019
– volume: 12
  start-page: 2861
  year: 2018
  ident: B1
  article-title: Economic Dispatch Considering the Wind Power Forecast Error
  publication-title: IET Gener. Transm. & Distrib.
  doi: 10.1049/iet-gtd.2017.1638
– volume: 10
  start-page: 1168
  year: 2017
  ident: B26
  article-title: Short-term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation
  publication-title: Energies
  doi: 10.3390/en10081168
– volume: 45
  start-page: 122
  year: 2015
  ident: B22
  article-title: Machine Learning Based Short Term Wind Power Prediction Using a Hybrid Learning Model
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2014.07.009
– volume: 118
  start-page: 105814
  ident: B9
  article-title: An Adaptive Time-Resolution Method for Ultra-short-term Wind Power Prediction
  publication-title: Int. J. Electr. Power & Energy Syst.
  doi: 10.1016/j.ijepes.2019.105814
– volume: 51
  start-page: 6752
  year: 2021
  ident: B4
  article-title: Feature Selection and Hyper Parameters Optimization for Short-Term Wind Power Forecast
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02191-y
– volume: 6
  start-page: 317
  year: 2018
  ident: B10
  article-title: Short-term Local Prediction of Wind Speed and Wind Power Based on Singular Spectrum Analysis and Locality-Sensitive Hashing
  publication-title: J. Mod. Power Syst. Clean. Energy
  doi: 10.1007/s40565-018-0398-0
– volume: 71
  start-page: 2601
  year: 2021
  ident: B24
  article-title: An Integrated Method of the Future Capacity and Rul Prediction for Lithium-Ion Battery Pack
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3138959
– start-page: 64
  volume-title: The Purple Mountain Forum on Smart Grid Protection and Control
  ident: B8
  article-title: Short-term Wind Power Prediction Based on Integration of Feature Set Mining and Two-Stage Xgboost
– start-page: 81
  volume-title: Automated Machine Learning
  year: 2019
  ident: B6
  article-title: Auto-weka: Automatic Model Selection and Hyperparameter Optimization in Weka
  doi: 10.1007/978-3-030-05318-5_4
– volume: 145
  start-page: 1517
  year: 2020
  ident: B14
  article-title: Very Short-Term Wind Power Density Forecasting through Artificial Neural Networks for Microgrid Control
  publication-title: Renew. energy
  doi: 10.1016/j.renene.2019.07.067
– start-page: 1
  year: 2020
  ident: B7
  article-title: An Ensemble Model for Short-Term Wind Power Forecasting Using Deep Learning and Gradient Boosting Algorithms
– start-page: 416
  year: 2020
  ident: B12
  article-title: A Comparative Analysis of Xgboost and Temporal Convolutional Network Models for Wind Power Forecasting
– volume: 2
  start-page: e12178
  year: 2020
  ident: B15
  article-title: Current Advances and Approaches in Wind Speed and Wind Power Forecasting for Improved Renewable Energy Integration: A Review
  publication-title: Eng. Rep.
  doi: 10.1002/eng2.12178
– volume: 45
  start-page: 413
  year: 2021
  ident: B11
  article-title: Wind Power Forecasting: A Systematic Literature Review
  publication-title: Wind Eng.
  doi: 10.1177/0309524x19891672
– volume: 120
  start-page: 106041
  year: 2020
  ident: B16
  article-title: A Distributed Memory Rbf-Based Model for Variable Generation Forecasting
  publication-title: Int. J. Electr. Power & Energy Syst.
  doi: 10.1016/j.ijepes.2020.106041
– volume: 5
  start-page: 12061
  year: 2017
  ident: B23
  article-title: Capacity Prognostics of Lithium-Ion Batteries Using Emd Denoising and Multiple Kernel Rvm
  publication-title: IEEE Access
  doi: 10.1109/access.2017.2716353
– volume: 223
  start-page: 106602
  year: 2021
  ident: B18
  article-title: Experiencethinking: Constrained Hyperparameter Optimization Based on Knowledge and Pruning
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.106602
– volume: 9
  start-page: 3019
  year: 2019
  ident: B25
  article-title: A Xgboost Model with Weather Similarity Analysis and Feature Engineering for Short-Term Wind Power Forecasting
  publication-title: Appl. Sci.
  doi: 10.3390/app9153019
– volume: 238
  start-page: 368
  year: 2019
  ident: B3
  article-title: A Novel Two-Stage Forecasting Model Based on Error Factor and Ensemble Method for Multi-step Wind Power Forecasting
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2019.01.063
– volume: 13
  start-page: 505
  year: 2017
  ident: B27
  article-title: Optimal Consumption with Reference-Dependent Preferences in On-The-Job Search and Savings
  publication-title: J. Industrial Manag. Optim.
  doi: 10.3934/jimo.2016029
– volume: 7
  start-page: 28309
  year: 2019
  ident: B5
  article-title: A Model Combining Convolutional Neural Network and Lightgbm Algorithm for Ultra-short-term Wind Power Forecasting
  publication-title: Ieee Access
  doi: 10.1109/access.2019.2901920
SSID ssj0001325410
Score 2.432808
Snippet The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian...
The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms Bayesian hyperparameters optimization
machine learning
numerical weather prediction
wind power forecasting
Xgboost algorithm
Title A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters Optimization
URI https://doaj.org/article/cf088de77bae4b5895f3b27c60835052
Volume 10
WOSCitedRecordID wos000803871900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3lgQgp1mjiOxxa1dKCliALdotzFgUrQorZ05LdzdkJVFlhYMlhOZL3L2fdi5z3GzqO6gBR84ylES1C0TykFgYdS5YEwGEt3iObxRvV68XCo-ytWX_ZMWCEPXABXw5zyIDNKQWpCkLGWeQB1hZGtHYR0s69QeoVMua8rAREfv9zGJBamazmF45n4YL1-qZ2vyY-FaEWv3y0s7W22VVaEvFGMZIetmfEu21zRCdxjdw1-_0J1sjegeZQ_EY3mfetuxq2xJqazOe86I2i-GKV8eN2cTKipQwxz6vVTe_rKSmjyW5od3srfLvfZQ7s1uOp4pReCh4EM514qKRl1CFkEcWRo6RGBwiBHAJFlGoGqLqUhFKmIcl9FoVYYhzFICejbzcPggFXGk7E5ZJxqCpSZAIFGhhmYGKNIWZ1A1AZyCVUmvoFJsBQKt34VrwkRBotl4rBMLJZJgWWVXSxveS9UMn7r3LRoLztagWvXQGFPyrAnf4X96D8ecsw27Lg8J8Z6wirz6Yc5Zeu4mI9m0zP3RtG1-9n6AmMJ0Ck
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Short-Term+Wind+Power+Forecast+Method+via+XGBoost+Hyper-Parameters+Optimization&rft.jtitle=Frontiers+in+energy+research&rft.au=Xiong%2C+Xiong&rft.au=Guo%2C+Xiaojie&rft.au=Zeng%2C+Pingliang&rft.au=Zou%2C+Ruiling&rft.date=2022-05-10&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=10&rft_id=info:doi/10.3389%2Ffenrg.2022.905155&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2022_905155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon