A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters Optimization

The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in energy research Jg. 10
Hauptverfasser: Xiong, Xiong, Guo, Xiaojie, Zeng, Pingliang, Zou, Ruiling, Wang, Xiaolong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 10.05.2022
Schlagworte:
ISSN:2296-598X, 2296-598X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms. Compared to the XGBoost, SVM, KELM, and LSTM, the results indicate that BH-XGBoost outperforms other methods in all the cases. The BH-XGBoost method could yield a more minor estimated error than the other methods, especially in the cases of wind ramp events caused by extreme weather conditions and low wind speed range. The comparison results led to the recommendation that the BH-XGBoost method is an effective method to forecast the short-term wind power for wind farms.
ISSN:2296-598X
2296-598X
DOI:10.3389/fenrg.2022.905155