Survival Prediction Model for Patients with Esophageal Squamous Cell Carcinoma Based on the Parameter-Optimized Deep Belief Network Using the Improved Archimedes Optimization Algorithm

Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients’ survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational and mathematical methods in medicine Ročník 2022; s. 1 - 14
Hlavní autoři: Wang, Yanfeng, Zhang, Wenhao, Sun, Junwei, Wang, Lidong, Song, Xin, Zhao, Xueke
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hindawi 08.07.2022
ISSN:1748-670X, 1748-6718, 1748-6718
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients’ survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size β of DBN. In order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.
AbstractList Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients’ survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size β of DBN. In order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.
Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients' survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size β of DBN. In order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients' survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size β of DBN. In order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.
Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients’ survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization algorithm is proposed in this paper for the survival prediction of patients with ESCC. Firstly, a combination of features significantly associated with the survival of patients is found by the minimum redundancy and maximum relevancy (MRMR) algorithm. Secondly, a DBN network is introduced to make predictions for survival of patients. Aiming at the problem that the deep belief network model is affected by parameters in the construction process, this paper uses the Archimedes optimization algorithm to optimize the learning rate α and batch size β of DBN. In order to overcome the problem that AOA is prone to fall into local optimum and low search accuracy, an improved Archimedes optimization algorithm (IAOA) is proposed. On this basis, a survival prediction model for patients with ESCC is constructed. Finally, accuracy comparison tests are carried out on IAOA-DBN, AOA-DBN, SSA-DBN, PSO-DBN, BES-DBN, IAOA-SVM, and IAOA-BPNN models. The results show that the IAOA-DBN model can effectively predict the five-year survival rate of patients and provide a reference for the clinical judgment of patients with ESCC.
Author Wang, Yanfeng
Zhang, Wenhao
Wang, Lidong
Song, Xin
Zhao, Xueke
Sun, Junwei
AuthorAffiliation 2 State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450066, China
1 School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
AuthorAffiliation_xml – name: 2 State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450066, China
– name: 1 School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
Author_xml – sequence: 1
  givenname: Yanfeng
  surname: Wang
  fullname: Wang, Yanfeng
  organization: School of Electrical and Information EngineeringZhengzhou University of Light IndustryZhengzhou 450000Chinazzuli.edu.cn
– sequence: 2
  givenname: Wenhao
  orcidid: 0000-0003-3917-5599
  surname: Zhang
  fullname: Zhang, Wenhao
  organization: School of Electrical and Information EngineeringZhengzhou University of Light IndustryZhengzhou 450000Chinazzuli.edu.cn
– sequence: 3
  givenname: Junwei
  orcidid: 0000-0001-8518-5064
  surname: Sun
  fullname: Sun, Junwei
  organization: School of Electrical and Information EngineeringZhengzhou University of Light IndustryZhengzhou 450000Chinazzuli.edu.cn
– sequence: 4
  givenname: Lidong
  surname: Wang
  fullname: Wang, Lidong
  organization: State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated HospitalZhengzhou UniversityZhengzhou 450066Chinazzu.edu.cn
– sequence: 5
  givenname: Xin
  surname: Song
  fullname: Song, Xin
  organization: State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated HospitalZhengzhou UniversityZhengzhou 450066Chinazzu.edu.cn
– sequence: 6
  givenname: Xueke
  surname: Zhao
  fullname: Zhao, Xueke
  organization: State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated HospitalZhengzhou UniversityZhengzhou 450066Chinazzu.edu.cn
BookMark eNp9kc1u1DAUhS1URH9gxwN4iURDbcfOzwZpOhSoVGilUomddRPfmRiSOLWdGcGT8Xi4nVElNqxs6X7n-PqcY3IwuhEJec3ZO86VOhNMiDNeC1mz4hk54qWssqLk1cHTnX0_JMch_GBM8VLxF-QwV5WUsmBH5M_t7Dd2Az298WhsG60b6RdnsKcr5-kNRItjDHRrY0cvgps6WGOib-9nGNwc6BL7ni7Bt3Z0A9BzCGho8ogdJrWHASP67HqKdrC_0-gD4kTPsbe4ol8xbp3_Se-CHdePisth8m6TsIVvOzugwUD3WnhcbdGvnU-7DC_J8xX0AV_tzxNy9_Hi2_JzdnX96XK5uMraXMmY1RUToEybp8-XRWOMyAUwU6JppcJKmqZSJTLBK2GKsmINSq4aMApRYgNNfkLe73ynuUn7tCkND72evB3A_9IOrP53MtpOr91G16IqaiWSwZu9gXf3M4aoBxvalBqMmALUoqi5VLUURUJPd2jrXQgeV0_PcKYfytYPZet92Ql_u8M7OxrY2v_TfwHbU68g
Cites_doi 10.1053/j.gastro.2019.11.030
10.1016/j.athoracsur.2019.09.028
10.1016/j.asjsur.2016.10.005
10.1126/science.aau3879
10.1200/JCO.19.02503
10.1007/s11604-018-0726-3
10.1504/IJAPR.2021.117203
10.4251/wjgo.v6.i5.112
10.1007/s00520-020-05483-0
10.3389/fgene.2020.615864
10.1002/ijc.33588
10.1016/j.radonc.2019.07.006
10.1109/ACCESS.2021.3108533
10.6004/jnccn.2019.0033
10.1097/SLA.0000000000003772
10.3389/fonc.2021.644860
10.1162/neco.2006.18.7.1527
10.1109/MSP.2017.2738401
10.1007/s00500-019-03856-0
10.1016/j.cmpb.2017.09.005
10.1142/S0218127418501766
10.1504/IJBIC.2021.118101
10.1088/0957-0233/26/11/115002
10.1016/S0140-6736(21)00001-5
10.2174/1574893614666190902152142
10.1109/TSP.2022.3173154
10.3390/cancers13010141
10.1001/jamanetworkopen.2020.32269
10.1007/s10388-021-00826-0
10.1007/s10462-019-09732-5
10.1504/IJBIC.2021.114875
10.1097/SLA.0000000000002985
10.1109/TBCAS.2021.3090786
10.1080/21642583.2019.1708830
10.1016/j.measurement.2021.110079
10.1001/jamaoncol.2020.7478
10.1097/CM9.0000000000001474
10.1016/j.dibe.2021.100045
10.1016/j.gie.2019.12.049
10.1056/NEJMoa2032125
10.1053/j.gastro.2019.10.039
10.1002/jnm.2829
10.1007/s10489-020-01893-z
10.1109/TCYB.2019.2951520
10.1080/1062936X.2018.1491414
10.1097/SLA.0000000000003445
10.1097/SLA.0000000000003500
10.1016/j.pdpdt.2020.102104
ContentType Journal Article
Copyright Copyright © 2022 Yanfeng Wang et al.
Copyright © 2022 Yanfeng Wang et al. 2022
Copyright_xml – notice: Copyright © 2022 Yanfeng Wang et al.
– notice: Copyright © 2022 Yanfeng Wang et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
7X8
5PM
DOI 10.1155/2022/1924906
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Chiroma, Haruna
Editor_xml – sequence: 1
  givenname: Haruna
  surname: Chiroma
  fullname: Chiroma, Haruna
EndPage 14
ExternalDocumentID PMC9286952
10_1155_2022_1924906
GrantInformation_xml – fundername: Henan Province University Science and Technology Innovation Talent Support Plan
  grantid: 20HASTIT027
– fundername: Youth Talent Lifting Project of Henan Province
  grantid: 2018HYTP016
– fundername: Open Fund of State Key Laboratory of Esophageal Cancer Prevention and Treatment
  grantid: K2020-0011; K2020-0010
– fundername: Henan University
  grantid: 2018GGJS092
– fundername: Zhongyuan Thousand Talents Program
  grantid: 204200510003
– fundername: National Natural Science Foundation of China
  grantid: U1804262
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
PGMZT
7X8
5PM
ID FETCH-LOGICAL-c354t-9802a5dc300576bdd232a0d7edc45e84db857e02182d6780be415bad5ee4ebab3
IEDL.DBID RHX
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829460100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-670X
1748-6718
IngestDate Tue Nov 04 01:52:23 EST 2025
Thu Oct 02 05:25:34 EDT 2025
Sat Nov 29 01:39:25 EST 2025
Sun Jun 02 18:52:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-9802a5dc300576bdd232a0d7edc45e84db857e02182d6780be415bad5ee4ebab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Haruna Chiroma
ORCID 0000-0001-8518-5064
0000-0003-3917-5599
OpenAccessLink https://dx.doi.org/10.1155/2022/1924906
PMID 35844460
PQID 2691459426
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286952
proquest_miscellaneous_2691459426
crossref_primary_10_1155_2022_1924906
hindawi_primary_10_1155_2022_1924906
PublicationCentury 2000
PublicationDate 2022-07-08
PublicationDateYYYYMMDD 2022-07-08
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-08
  day: 08
PublicationDecade 2020
PublicationTitle Computational and mathematical methods in medicine
PublicationYear 2022
Publisher Hindawi
Publisher_xml – name: Hindawi
References 44
45
46
47
48
49
50
10
11
12
13
14
15
16
17
18
19
1
J. Sun (20) 2021; 129, article 153552
2
3
4
5
6
7
8
9
21
22
23
24
26
27
28
29
30
31
32
33
34
35
36
37
38
39
R. Kaviarasi (25) 2019; 43
40
41
42
43
References_xml – ident: 31
  doi: 10.1053/j.gastro.2019.11.030
– ident: 15
  doi: 10.1016/j.athoracsur.2019.09.028
– ident: 10
  doi: 10.1016/j.asjsur.2016.10.005
– ident: 18
  doi: 10.1126/science.aau3879
– volume: 129, article 153552
  year: 2021
  ident: 20
  article-title: Memristor-based neural network circuit of Pavlov associative memory with dual mode switching
  publication-title: AEUinternational Journal of Electronics and Communications
– ident: 12
  doi: 10.1200/JCO.19.02503
– ident: 34
  doi: 10.1007/s11604-018-0726-3
– ident: 35
  doi: 10.1504/IJAPR.2021.117203
– ident: 17
  doi: 10.4251/wjgo.v6.i5.112
– ident: 27
  doi: 10.1007/s00520-020-05483-0
– ident: 26
  doi: 10.3389/fgene.2020.615864
– ident: 1
  doi: 10.1002/ijc.33588
– ident: 14
  doi: 10.1016/j.radonc.2019.07.006
– ident: 42
  doi: 10.1109/ACCESS.2021.3108533
– ident: 8
  doi: 10.6004/jnccn.2019.0033
– ident: 9
  doi: 10.1097/SLA.0000000000003772
– ident: 40
  doi: 10.3389/fonc.2021.644860
– ident: 49
  doi: 10.1162/neco.2006.18.7.1527
– ident: 33
  doi: 10.1109/MSP.2017.2738401
– ident: 29
  doi: 10.1007/s00500-019-03856-0
– volume: 43
  start-page: 1
  issue: 7
  year: 2019
  ident: 25
  article-title: Accuracy enhanced lung cancer prognosis for improving patient survivability using proposed Gaussian classifier system
  publication-title: Journal of Medical Systems
– ident: 30
  doi: 10.1016/j.cmpb.2017.09.005
– ident: 43
  doi: 10.1142/S0218127418501766
– ident: 36
  doi: 10.1504/IJBIC.2021.118101
– ident: 50
  doi: 10.1088/0957-0233/26/11/115002
– ident: 3
  doi: 10.1016/S0140-6736(21)00001-5
– ident: 24
  doi: 10.2174/1574893614666190902152142
– ident: 46
  doi: 10.1109/TSP.2022.3173154
– ident: 6
  doi: 10.3390/cancers13010141
– ident: 23
  doi: 10.1001/jamanetworkopen.2020.32269
– ident: 32
  doi: 10.1007/s10388-021-00826-0
– ident: 48
  doi: 10.1007/s10462-019-09732-5
– ident: 45
  doi: 10.1504/IJBIC.2021.114875
– ident: 16
  doi: 10.1097/SLA.0000000000002985
– ident: 19
  doi: 10.1109/TBCAS.2021.3090786
– ident: 47
  doi: 10.1080/21642583.2019.1708830
– ident: 37
  doi: 10.1016/j.measurement.2021.110079
– ident: 5
  doi: 10.1001/jamaoncol.2020.7478
– ident: 2
  doi: 10.1097/CM9.0000000000001474
– ident: 28
  doi: 10.1016/j.dibe.2021.100045
– ident: 13
  doi: 10.1016/j.gie.2019.12.049
– ident: 11
  doi: 10.1056/NEJMoa2032125
– ident: 22
  doi: 10.1053/j.gastro.2019.10.039
– ident: 44
  doi: 10.1002/jnm.2829
– ident: 41
  doi: 10.1007/s10489-020-01893-z
– ident: 21
  doi: 10.1109/TCYB.2019.2951520
– ident: 38
  doi: 10.1080/1062936X.2018.1491414
– ident: 4
  doi: 10.1097/SLA.0000000000003445
– ident: 7
  doi: 10.1097/SLA.0000000000003500
– ident: 39
  doi: 10.1016/j.pdpdt.2020.102104
SSID ssj0051751
Score 2.3056376
Snippet Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can...
SourceID pubmedcentral
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
Title Survival Prediction Model for Patients with Esophageal Squamous Cell Carcinoma Based on the Parameter-Optimized Deep Belief Network Using the Improved Archimedes Optimization Algorithm
URI https://dx.doi.org/10.1155/2022/1924906
https://www.proquest.com/docview/2691459426
https://pubmed.ncbi.nlm.nih.gov/PMC9286952
Volume 2022
WOSCitedRecordID wos000829460100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051751
  issn: 1748-670X
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoBagXVF5iC60GqRwtkqwdO8d2adUDLCsKUm6RHc_SlXazZR8g8cv4ecw4WUTgAJdIiWcsx2N7ZuzxN0KcpnVqfY6FDKmppUoRpTfByFyraeaGdaJtvCj81ozHtiyLSQeStP77CJ-0Hbvn2evoJzC09p7VHLn14arcLbiaNGDa3nu0MjdJuYtv_4O3p3nu3bDL-23WMyz7YZG_6ZnLQ_GgMxDhrJXoQ3EHm0fi_rvuCPyx-HG9pdlN4wMmK_7IHQuc0WwOZH_CpMVJXQNvsMIFJymgFYOor79sHbv5MML5HEacQqhZLhyckxoLQHWQJUjcHKtFXS3f01KymH2nojeIt3COZKtOYdwGjUMMNIgc7aYEkUUIW_otXEPHG2UOZ_PPyxW1ZfFEfLq8-Di6kl36BVkPtdrIwiaZ06FmQHuT-xDI-HJJMNRBSqNVwVttMELAB1J5iUcyBrwLGlGhd374VOw3ywafCVBUwdCjTqZBqboOLvfT1BdEpBRmuRuIVzvRVLctykYVvROtKxZh1YlwIE47uf2D7OVOqBXNFj4CcQ1SF1dZXqRKF2SWDITpSftXhYy33S9pZjcRd7vIbF7o7Oj_GvFcHPBrDO21L8T-ZrXFY3G3_rqZrVcnYi9TE3qa0p7E0fwTejbyiw
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+Prediction+Model+for+Patients+with+Esophageal+Squamous+Cell+Carcinoma+Based+on+the+Parameter-Optimized+Deep+Belief+Network+Using+the+Improved+Archimedes+Optimization+Algorithm&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Wang%2C+Yanfeng&rft.au=Zhang%2C+Wenhao&rft.au=Sun%2C+Junwei&rft.au=Wang%2C+Lidong&rft.date=2022-07-08&rft.pub=Hindawi&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1924906&rft_id=info%3Apmid%2F35844460&rft.externalDocID=PMC9286952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon