Nano-scale MOSFET device modelling with quantum mechanical effects

The continuing down-scaling trend of CMOS technology has brought serious deterioration in the accuracy of the SPICE (Simulation Program with Integrated Circuit Emphasis) device models used in the design of chip functions. This is due to in part to hot electron and quantum effects that occur in moder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics Jg. 17; H. 4; S. 465 - 489
Hauptverfasser: CUMBERBATCH, ELLIS, UNO, SHIGEYASU, ABEBE, HENOK
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.08.2006
Schlagworte:
ISSN:0956-7925, 1469-4425
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The continuing down-scaling trend of CMOS technology has brought serious deterioration in the accuracy of the SPICE (Simulation Program with Integrated Circuit Emphasis) device models used in the design of chip functions. This is due to in part to hot electron and quantum effects that occur in modern nano-scale MOSFET devices [13, 25, 28, 33, 34]. The focus of this paper is on modeling quantum confinement effects based on the Density-Gradient (DG) model [6, 9, 14], for application in SPICE. Analytic 1-D quantum mechanical (QM) effects correction formulae for the MOSFET inversion charge and electrostatic potential are derived from the DG model using matched asymptotic expansion techniques. Comparison of these new models with numerical data shows good results.
Bibliographie:ark:/67375/6GQ-4JWRMG5J-H
istex:6DBC3D2F3F1E353DB785709B7AE2B6D45D66088E
PII:S0956792506006656
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792506006656