Nano-scale MOSFET device modelling with quantum mechanical effects
The continuing down-scaling trend of CMOS technology has brought serious deterioration in the accuracy of the SPICE (Simulation Program with Integrated Circuit Emphasis) device models used in the design of chip functions. This is due to in part to hot electron and quantum effects that occur in moder...
Gespeichert in:
| Veröffentlicht in: | European journal of applied mathematics Jg. 17; H. 4; S. 465 - 489 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.08.2006
|
| Schlagworte: | |
| ISSN: | 0956-7925, 1469-4425 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The continuing down-scaling trend of CMOS technology has brought serious deterioration in the accuracy of the SPICE (Simulation Program with Integrated Circuit Emphasis) device models used in the design of chip functions. This is due to in part to hot electron and quantum effects that occur in modern nano-scale MOSFET devices [13, 25, 28, 33, 34]. The focus of this paper is on modeling quantum confinement effects based on the Density-Gradient (DG) model [6, 9, 14], for application in SPICE. Analytic 1-D quantum mechanical (QM) effects correction formulae for the MOSFET inversion charge and electrostatic potential are derived from the DG model using matched asymptotic expansion techniques. Comparison of these new models with numerical data shows good results. |
|---|---|
| Bibliographie: | ark:/67375/6GQ-4JWRMG5J-H istex:6DBC3D2F3F1E353DB785709B7AE2B6D45D66088E PII:S0956792506006656 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0956-7925 1469-4425 |
| DOI: | 10.1017/S0956792506006656 |