Modalities in homotopy type theory

Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 16, Issue 1
Main Authors: Rijke, Egbert, Shulman, Michael, Spitters, Bas
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science e.V 01.01.2020
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the ($n$-connected, $n$-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions.
AbstractList Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the ($n$-connected, $n$-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions.
Author Rijke, Egbert
Shulman, Michael
Spitters, Bas
Author_xml – sequence: 1
  givenname: Egbert
  surname: Rijke
  fullname: Rijke, Egbert
– sequence: 2
  givenname: Michael
  surname: Shulman
  fullname: Shulman, Michael
– sequence: 3
  givenname: Bas
  orcidid: 0000-0002-2802-0973
  surname: Spitters
  fullname: Spitters, Bas
BookMark eNp1kE9LAzEUxINUsNZ-AG-LJz2s5iXZZONNin8KLR7Uc3ibzdqUbVOyuey3d9sqiOC7zGPgNwxzTkbbsHWEXAK9ZVzy8m6xnL3lIK_hnt0wyugJGUMpaV5oJUa__jMy7bo1HY5zKJkck6tlqLH1ybsu89tsFTYhhV2fpX7nsrRyIfYX5LTBtnPTb52Qj6fH99lLvnh9ns8eFrnlhUg5LxmvUEooLQNrHXCpHdUIGrRyjbD1IKwGihIqbFBBARILVSgGTgDyCZkfc-uAa7OLfoOxNwG9ORghfhqMydvWGVWiUKIGVVgtQDDNUDALdVU5q9VQZELUMcvG0HXRNcb6hMmHbYroWwPUHJYz--UMSAOGmf1yAwl_yJ8m_zNfdB9wzw
CitedBy_id crossref_primary_10_1007_s00220_024_05020_8
crossref_primary_10_1145_3632852
crossref_primary_10_1145_3498670
crossref_primary_10_1145_3607862
crossref_primary_10_1007_s40509_025_00368_5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23638/LMCS-16(1:2)2020
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_78a474d175c9414292a42c1dbbec9782
10_23638_LMCS_16_1_2_2020
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c354t-3823ba6618c21cce1369e09a19197ef4cd97e2d10a61bafa71516a575721e41a3
IEDL.DBID DOA
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523360600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:34:50 EDT 2025
Sat Nov 29 08:06:27 EST 2025
Tue Nov 18 19:47:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-3823ba6618c21cce1369e09a19197ef4cd97e2d10a61bafa71516a575721e41a3
ORCID 0000-0002-2802-0973
OpenAccessLink https://doaj.org/article/78a474d175c9414292a42c1dbbec9782
ParticipantIDs doaj_primary_oai_doaj_org_article_78a474d175c9414292a42c1dbbec9782
crossref_citationtrail_10_23638_LMCS_16_1_2_2020
crossref_primary_10_23638_LMCS_16_1_2_2020
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2020
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.4631507
Snippet Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms computer science - logic in computer science
f.3.1
f.3.1, f.4.1
f.4.1
mathematics - category theory
mathematics - logic
Title Modalities in homotopy type theory
URI https://doaj.org/article/78a474d175c9414292a42c1dbbec9782
Volume 16, Issue 1
WOSCitedRecordID wos000523360600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPHjxW5xfFPGgQljz0aT1pmPDwzYEP9gtpEmKA-nGnMIu_u2-pN2YF714aaCkbfJ7Sd775aXvIXRhpSuIoQUuMmow5zbBmuc5tsaknGvp4uA9f-nJwSAdDrOHlVRf_kxYFR64Aq4lU80lt6DlTMaJT66kOTXE5vBxYEBh9Y1ltkKmwhrMmDecKzcmZTDIWr1--xETcUlu6BUw_viHIlqJ1x8US3cbbdYWYXRbtWQHrblyF20tsi1E9eTbQ-f9sfVGM1DbaFRGr_4Y3Xgyj_wmahT-R5zvo-du56l9j-sMB9iwhM-wd8LlGlRkaigxxhEmMkBHA4nKAERuLBTUklgLkutCS9DPQoOFBbzNcaLZAWqU49IdokgneeEy5qwUluvYgF0m01i7VFgJoOdNFC-6q0wd_ttnoXhTQAMCQsojpIhQRFHlEWqi6-Ujkyr2xW-V7zyGy4o-bHW4AcJUtTDVX8I8-o-XHKMN36Bqn-QENWbTD3eK1s3nbPQ-PQvjBK79r843iyzAUA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modalities+in+homotopy+type+theory&rft.jtitle=Logical+methods+in+computer+science&rft.au=Egbert+Rijke&rft.au=Michael+Shulman&rft.au=Bas+Spitters&rft.date=2020-01-01&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=16%2C+Issue+1&rft_id=info:doi/10.23638%2FLMCS-16%281%3A2%292020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_78a474d175c9414292a42c1dbbec9782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon