Modalities in homotopy type theory

Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 16, Issue 1
Hlavní autoři: Rijke, Egbert, Shulman, Michael, Spitters, Bas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 01.01.2020
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the ($n$-connected, $n$-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-16(1:2)2020