Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations

In this paper, we extend the cubature Kalman filter (CKF) to deal with nonlinear state-space models of the continuous-discrete kind. To be consistent with the literature, the resulting nonlinear filter is referred to as the continuous-discrete cubature Kalman filter (CD-CKF). We use the Itô-Taylor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 58; no. 10; pp. 4977 - 4993
Main Authors: Arasaratnam, Ienkaran, Haykin, Simon, Hurd, Thomas R
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.10.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we extend the cubature Kalman filter (CKF) to deal with nonlinear state-space models of the continuous-discrete kind. To be consistent with the literature, the resulting nonlinear filter is referred to as the continuous-discrete cubature Kalman filter (CD-CKF). We use the Itô-Taylor expansion of order 1.5 to transform the process equation, modeled in the form of stochastic ordinary differential equations, into a set of stochastic difference equations. Building on this transformation and assuming that all conditional densities are Gaussian-distributed, the solution to the Bayesian filter reduces to the problem of how to compute Gaussian-weighted integrals. To numerically compute the integrals, we use the third-degree cubature rule. For a reliable implementation of the CD-CKF in a finite word-length machine, it is structurally modified to propagate the square-roots of the covariance matrices. The reliability and accuracy of the square-root version of the CD-CKF are tested in a case study that involves the use of a radar problem of practical significance; the problem considered herein is challenging in the context of radar in two respects- high dimensionality of the state and increasing degree of nonlinearity. The results, presented herein, indicate that the CD-CKF markedly outperforms existing continuous-discrete filters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2010.2056923