A mass supercritical problem revisited

In any dimension N ≥ 1 and for given mass m > 0 , we revisit the nonlinear scalar field equation with an L 2 constraint: - Δ u = f ( u ) - μ u in R N , ‖ u ‖ L 2 ( R N ) 2 = m , u ∈ H 1 ( R N ) , ( P m ) where μ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is con...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Calculus of variations and partial differential equations Ročník 59; číslo 5
Hlavní autori: Jeanjean, Louis, Lu, Sheng-Sen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0944-2669, 1432-0835
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In any dimension N ≥ 1 and for given mass m > 0 , we revisit the nonlinear scalar field equation with an L 2 constraint: - Δ u = f ( u ) - μ u in R N , ‖ u ‖ L 2 ( R N ) 2 = m , u ∈ H 1 ( R N ) , ( P m ) where μ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to ( P m ) and reveal the basic behavior of the ground state energy E m as m > 0 varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other L 2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any N ≥ 2 and establish the existence and multiplicity of nonradial sign-changing solutions when N ≥ 4 . Finally we propose two open problems.
AbstractList In any dimension N ≥ 1 and for given mass m > 0, we revisit the nonlinear scalar field equation with an L 2 constraint:        −∆u = f (u) − µu in R N , u 2 L 2 (R N) = m, u ∈ H 1 (R N), (Pm) where µ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to (Pm) and reveal the basic behavior of the ground state energy Em as m > 0 varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other L 2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any N ≥ 2 and establish the existence and multiplicity of nonradial signchanging solutions when N ≥ 4. Finally we propose two open problems.
In any dimension N ≥ 1 and for given mass m > 0 , we revisit the nonlinear scalar field equation with an L 2 constraint: - Δ u = f ( u ) - μ u in R N , ‖ u ‖ L 2 ( R N ) 2 = m , u ∈ H 1 ( R N ) , ( P m ) where μ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to ( P m ) and reveal the basic behavior of the ground state energy E m as m > 0 varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other L 2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any N ≥ 2 and establish the existence and multiplicity of nonradial sign-changing solutions when N ≥ 4 . Finally we propose two open problems.
In any dimension N≥1 and for given mass m>0, we revisit the nonlinear scalar field equation with an L2 constraint: -Δu=f(u)-μuinRN,‖u‖L2(RN)2=m,u∈H1(RN),(Pm)where μ∈R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to (Pm) and reveal the basic behavior of the ground state energy Em as m>0 varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other L2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any N≥2 and establish the existence and multiplicity of nonradial sign-changing solutions when N≥4. Finally we propose two open problems.
ArticleNumber 174
Author Lu, Sheng-Sen
Jeanjean, Louis
Author_xml – sequence: 1
  givenname: Louis
  surname: Jeanjean
  fullname: Jeanjean, Louis
  email: louis.jeanjean@univ-fcomte.fr
  organization: Laboratoire de Mathématiques (CNRS UMR 6623), Université de Bourgogne Franche-Comté
– sequence: 2
  givenname: Sheng-Sen
  surname: Lu
  fullname: Lu, Sheng-Sen
  organization: Center for Applied Mathematics, Tianjin University, School of Mathematical Sciences and LMAM, Peking University
BackLink https://hal.science/hal-03336029$$DView record in HAL
BookMark eNp9kE9LAzEQxYNUsK1-AU8LguAhOvm3mz2WolYoeNFzyGYTTdnu1mRbsJ_e1BUFD53LwPB-bx5vgkZt11qELgncEoDiLgIImmOggIFIKvH-BI0JZxSDZGKExlByjmmel2doEuMKgAhJ-Rhdz7K1jjGL240NJvjeG91km9BVjV1nwe589L2tz9Gp0020Fz97il4f7l_mC7x8fnyaz5bYMMF6bI2pmKZpSllbIZ2jjOWWFsyy2hpdVoJop3OTWw6MG1E4WcuaSmNI5WrOpuhm8H3XjdoEv9bhU3Xaq8VsqQ43YMkQaLkjSXs1aFPaj62NvVp129CmeIpyAZRxUdCkooPKhC7GYN2vLQF16E4N3anUnfruTu0TJP9Bxve6913bB-2b4ygb0Jj-tG82_KU6Qn0BdLaEzA
CitedBy_id crossref_primary_10_1002_mana_202000481
crossref_primary_10_3934_dcdss_2025040
crossref_primary_10_64700_mmm_35
crossref_primary_10_1007_s00209_025_03705_x
crossref_primary_10_1007_s12220_024_01629_2
crossref_primary_10_1007_s11005_023_01749_w
crossref_primary_10_1515_dema_2025_0113
crossref_primary_10_1002_mma_10556
crossref_primary_10_1007_s11784_023_01077_5
crossref_primary_10_1002_mma_10954
crossref_primary_10_1007_s13324_023_00788_9
crossref_primary_10_1007_s00030_024_00988_7
crossref_primary_10_1007_s12220_025_02127_9
crossref_primary_10_1016_j_aml_2024_109426
crossref_primary_10_1016_j_jde_2025_02_059
crossref_primary_10_1016_j_jde_2025_113719
crossref_primary_10_1007_s11784_025_01229_9
crossref_primary_10_1016_j_jde_2021_09_022
crossref_primary_10_1007_s00208_024_02857_1
crossref_primary_10_1007_s00033_025_02478_x
crossref_primary_10_3934_dcds_2025131
crossref_primary_10_1007_s00526_023_02548_w
crossref_primary_10_1007_s12220_024_01826_z
crossref_primary_10_1007_s00526_023_02592_6
crossref_primary_10_1007_s12346_024_01071_3
crossref_primary_10_1080_10236198_2025_2554129
crossref_primary_10_1016_j_jde_2021_03_016
crossref_primary_10_1007_s12220_025_02053_w
crossref_primary_10_1007_s11784_024_01130_x
crossref_primary_10_1007_s12220_024_01770_y
crossref_primary_10_1016_j_jde_2023_08_005
crossref_primary_10_1007_s00030_022_00764_5
crossref_primary_10_1007_s40304_024_00438_x
crossref_primary_10_1016_j_jde_2025_113440
crossref_primary_10_1016_j_jde_2023_12_026
crossref_primary_10_1007_s00526_021_02166_4
crossref_primary_10_1016_j_cnsns_2025_108917
crossref_primary_10_1007_s00526_024_02699_4
crossref_primary_10_1007_s12220_024_01840_1
crossref_primary_10_1515_anona_2025_0088
crossref_primary_10_1007_s00526_024_02671_2
crossref_primary_10_1007_s12346_024_01001_3
crossref_primary_10_1017_S001309152510103X
crossref_primary_10_1016_j_aml_2023_108947
crossref_primary_10_1007_s00526_024_02830_5
crossref_primary_10_1007_s00526_021_02116_0
crossref_primary_10_1007_s12220_024_01890_5
crossref_primary_10_1007_s13324_024_00963_6
crossref_primary_10_1137_21M1445879
crossref_primary_10_1007_s00209_024_03432_9
crossref_primary_10_1007_s12220_024_01548_2
crossref_primary_10_1007_s00526_022_02320_6
crossref_primary_10_1186_s13661_025_02097_5
crossref_primary_10_1515_forum_2023_0262
crossref_primary_10_3934_dcdss_2024035
crossref_primary_10_1007_s12220_024_01771_x
crossref_primary_10_1016_j_jde_2024_11_049
crossref_primary_10_1007_s12346_024_01183_w
crossref_primary_10_1016_j_jfa_2021_108989
crossref_primary_10_1016_j_jde_2023_01_039
crossref_primary_10_1016_j_jde_2022_06_013
crossref_primary_10_3390_axioms13020118
crossref_primary_10_12677_AAM_2022_1112897
crossref_primary_10_1007_s12220_023_01308_8
crossref_primary_10_1016_j_jde_2023_03_049
crossref_primary_10_1007_s11784_025_01186_3
crossref_primary_10_1007_s12346_023_00893_x
crossref_primary_10_1007_s13324_024_00954_7
crossref_primary_10_1007_s00033_024_02200_3
crossref_primary_10_1007_s12220_023_01199_9
crossref_primary_10_1007_s00526_022_02355_9
crossref_primary_10_1007_s12220_022_00980_6
crossref_primary_10_1515_ans_2023_0163
crossref_primary_10_1088_1361_6544_ac902c
crossref_primary_10_1007_s00033_023_01994_y
crossref_primary_10_1016_j_na_2025_113845
crossref_primary_10_1007_s12220_025_02121_1
crossref_primary_10_1002_mana_202200443
crossref_primary_10_1088_1361_6544_acda76
crossref_primary_10_1007_s12220_024_01830_3
crossref_primary_10_1016_j_jde_2024_08_015
crossref_primary_10_3390_fractalfract9080482
crossref_primary_10_1007_s13324_022_00753_y
crossref_primary_10_1007_s12220_023_01504_6
crossref_primary_10_1007_s11118_023_10116_2
crossref_primary_10_1017_S0013091523000676
crossref_primary_10_1016_j_aml_2023_108763
crossref_primary_10_1016_j_jde_2024_01_041
crossref_primary_10_1007_s00033_023_02158_8
crossref_primary_10_1007_s11784_024_01135_6
crossref_primary_10_1088_1361_6544_ad1b8b
crossref_primary_10_1515_ans_2023_0175
crossref_primary_10_1016_j_jmaa_2023_127756
crossref_primary_10_1016_j_jmaa_2024_128161
crossref_primary_10_1016_j_matpur_2024_01_004
crossref_primary_10_1007_s11784_025_01233_z
crossref_primary_10_1007_s12220_024_01667_w
crossref_primary_10_3934_dcds_2025120
crossref_primary_10_1007_s10473_024_0514_3
crossref_primary_10_1007_s12346_025_01294_y
crossref_primary_10_1016_j_jfa_2022_109574
crossref_primary_10_1007_s00032_025_00421_3
crossref_primary_10_1007_s00030_024_01017_3
crossref_primary_10_1007_s00033_022_01741_9
crossref_primary_10_1016_j_jmaa_2024_128173
crossref_primary_10_1080_17476933_2025_2512541
crossref_primary_10_1007_s12220_023_01396_6
crossref_primary_10_1088_1361_6544_ac7b61
crossref_primary_10_1007_s12220_021_00842_7
crossref_primary_10_1080_17476933_2024_2394876
Cites_doi 10.1137/19M1243907
10.1007/s00220-017-2866-1
10.1007/s00208-020-02000-w
10.1007/BF01626517
10.2140/apde.2019.12.1177
10.1090/tran/7769
10.1016/j.jfa.2020.108610
10.1007/978-1-4612-4146-1
10.1016/j.na.2004.03.034
10.1088/1361-6544/aaf2e0
10.1016/0022-1236(73)90051-7
10.1016/S0362-546X(96)00021-1
10.1007/BF00250556
10.1017/CBO9780511551703
10.1017/S0308210500013147
10.1016/j.jfa.2009.09.013
10.1112/plms/pds072
10.1007/BF01941322
10.1515/ans-2014-0104
10.1016/0022-1236(82)90072-6
10.1016/j.jfa.2017.01.025
10.2307/2044999
10.1016/j.anihpc.2006.01.003
10.1016/j.jfa.2018.02.007
10.1007/s00208-018-1666-z
10.1016/j.matpur.2016.03.004
10.1515/ans-2004-0411
10.1088/1361-6544/ab435e
10.1007/s00013-012-0468-x
10.1007/BF00250555
10.1016/j.na.2019.111604
10.4171/JEMS/351
10.1006/jfan.1993.1133
10.1016/j.jde.2020.05.016
10.1016/S0294-1449(16)30428-0
10.1090/cbms/065
10.1016/S0294-1449(16)30422-X
10.1515/ans-2008-0302
10.1007/s00526-018-1476-x
10.1016/j.jfa.2021.108989
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s00526-020-01828-z
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
ExternalDocumentID oai:HAL:hal-03336029v1
10_1007_s00526_020_01828_z
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c353t-eccb3a222298de58ff2336e273e3deca9b51afa6c6e4034c57f8d8d28cc1bfd43
IEDL.DBID RSV
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573287000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-2669
IngestDate Sat Nov 29 15:02:38 EST 2025
Wed Sep 17 23:56:14 EDT 2025
Tue Nov 18 22:36:35 EST 2025
Sat Nov 29 06:45:36 EST 2025
Fri Feb 21 02:35:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 35Q55
35J60
Mass supercritical cases
Radial and nonradial solutions
Sign-changing solutions
Ground states
35Q55 Nonlinear scalar field equations
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-eccb3a222298de58ff2336e273e3deca9b51afa6c6e4034c57f8d8d28cc1bfd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hal.science/hal-03336029
PQID 2450234572
PQPubID 32028
ParticipantIDs hal_primary_oai_HAL_hal_03336029v1
proquest_journals_2450234572
crossref_primary_10_1007_s00526_020_01828_z
crossref_citationtrail_10_1007_s00526_020_01828_z
springer_journals_10_1007_s00526_020_01828_z
PublicationCentury 2000
PublicationDate 20201000
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Bartsch, Zhang, Zou (CR9) 2020
Lions (CR30) 1982; 49
Ghoussoub (CR21) 1993
Lorca, Ubilla (CR34) 2004; 58
Musso, Pacard, Wei (CR36) 2012; 14
Berestycki, Cazenave (CR13) 1981; 293
Palais (CR38) 1979; 69
Jeanjean, Lu (CR26) 2020; 190
CR19
CR39
CR16
Liu, Wang (CR33) 2004; 4
CR35
Cingolani, Jeanjean (CR20) 2019; 51
CR32
Berestycki, Lions (CR14) 1983; 82
CR31
Bartsch, Soave (CR5) 2017; 272
Bartsch, Willem (CR8) 1993; 117
Szulkin, Weth (CR43) 2009; 257
Jeanjean (CR25) 1999; 129
Bonheure, Casteras, Gou, Jeanjean (CR17) 2019; 372
Le Coz (CR28) 2008; 8
Ikoma (CR22) 2014; 14
Ambrosetti, Rabinowitz (CR2) 1973; 14
Strauss (CR42) 1977; 55
Brezis, Lieb (CR18) 1983; 88
Bellazzini, Georgiev, Visciglia (CR11) 2018; 371
Willem (CR45) 1996
Soave (CR40) 2020; 269
Ackermans, Weth (CR1) 2019; 12
Szulkin, Weth (CR44) 2010
CR7
Bartsch, Jeanjean, Soave (CR4) 2016; 106
Bartsch, Soave (CR6) 2018; 275
Noris, Tavares, Verzini (CR37) 2019; 32
Jeanjean, Lu (CR27) 2019; 32
Bartsch, De Valeriola (CR3) 2013; 100
Berestycki, Lions (CR15) 1983; 82
Li, Wang, Zeng (CR29) 2006; 23
Soave (CR41) 2020; 279
Bellazzini, Jeanjean, Luo (CR12) 2013; 107
Bellazzini, Boussaid, Jeanjean, Visciglia (CR10) 2017; 353
Ikoma, Tanaka (CR23) 2019; 24
Jeanjean (CR24) 1997; 28
L Jeanjean (1828_CR26) 2020; 190
J Bellazzini (1828_CR10) 2017; 353
A Ambrosetti (1828_CR2) 1973; 14
Y Li (1828_CR29) 2006; 23
L Jeanjean (1828_CR27) 2019; 32
N Ikoma (1828_CR23) 2019; 24
1828_CR19
S Lorca (1828_CR34) 2004; 58
1828_CR16
N Ikoma (1828_CR22) 2014; 14
T Bartsch (1828_CR8) 1993; 117
S Cingolani (1828_CR20) 2019; 51
P-L Lions (1828_CR30) 1982; 49
1828_CR39
1828_CR7
T Bartsch (1828_CR9) 2020
1828_CR32
J Bellazzini (1828_CR12) 2013; 107
1828_CR35
M Willem (1828_CR45) 1996
S Le Coz (1828_CR28) 2008; 8
1828_CR31
H Berestycki (1828_CR14) 1983; 82
N Soave (1828_CR40) 2020; 269
T Bartsch (1828_CR4) 2016; 106
T Bartsch (1828_CR6) 2018; 275
N Soave (1828_CR41) 2020; 279
M Musso (1828_CR36) 2012; 14
H Berestycki (1828_CR13) 1981; 293
L Jeanjean (1828_CR25) 1999; 129
N Ackermans (1828_CR1) 2019; 12
T Bartsch (1828_CR3) 2013; 100
Z Liu (1828_CR33) 2004; 4
A Szulkin (1828_CR44) 2010
J Bellazzini (1828_CR11) 2018; 371
RS Palais (1828_CR38) 1979; 69
N Ghoussoub (1828_CR21) 1993
L Jeanjean (1828_CR24) 1997; 28
D Bonheure (1828_CR17) 2019; 372
H Brezis (1828_CR18) 1983; 88
B Noris (1828_CR37) 2019; 32
A Szulkin (1828_CR43) 2009; 257
WA Strauss (1828_CR42) 1977; 55
T Bartsch (1828_CR5) 2017; 272
H Berestycki (1828_CR15) 1983; 82
References_xml – volume: 51
  start-page: 3533
  year: 2019
  end-page: 3568
  ident: CR20
  article-title: Stationary waves with prescribed -norm for the planar Schrödinger–Poisson system
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/19M1243907
– volume: 8
  start-page: 455
  year: 2008
  end-page: 463
  ident: CR28
  article-title: A note on Berestycki–Cazenave classical instability result for nonlinear Schrödinger equations
  publication-title: Adv. Nonlinear Stud.
– volume: 353
  start-page: 229
  year: 2017
  end-page: 251
  ident: CR10
  article-title: Existence and stability of standing waves for supercritical NLS with a partial confinement
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-017-2866-1
– volume: 293
  start-page: 489
  year: 1981
  end-page: 492
  ident: CR13
  article-title: Instabilités des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaire
  publication-title: C. R. Acad. Sci. Paris
– year: 2020
  ident: CR9
  article-title: Normalized solutions for a coupled Schrödinger system
  publication-title: Math. Annalen
  doi: 10.1007/s00208-020-02000-w
– volume: 55
  start-page: 149
  year: 1977
  end-page: 162
  ident: CR42
  article-title: Existence of solitary waves in higher dimensions
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01626517
– ident: CR39
– volume: 12
  start-page: 1177
  year: 2019
  end-page: 1213
  ident: CR1
  article-title: Unstable normalized standing waves for the space periodic NLS
  publication-title: Anal. PDE
  doi: 10.2140/apde.2019.12.1177
– ident: CR16
– volume: 372
  start-page: 2167
  year: 2019
  end-page: 2212
  ident: CR17
  article-title: Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/7769
– volume: 279
  start-page: 108610
  year: 2020
  ident: CR41
  article-title: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2020.108610
– year: 1996
  ident: CR45
  publication-title: Minimax Theorems
  doi: 10.1007/978-1-4612-4146-1
– volume: 58
  start-page: 961
  year: 2004
  end-page: 968
  ident: CR34
  article-title: Symmetric and nonsymmetric solutions for an elliptic equation on
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2004.03.034
– volume: 32
  start-page: 1044
  year: 2019
  end-page: 1072
  ident: CR37
  article-title: Normalized solutions for nonlinear Schrödinger systems on bounded domains
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aaf2e0
– volume: 14
  start-page: 349
  year: 1973
  end-page: 381
  ident: CR2
  article-title: Dual variational methods in critical points theory and applications
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– ident: CR35
– volume: 28
  start-page: 1633
  year: 1997
  end-page: 1659
  ident: CR24
  article-title: Existence of solutions with prescribed norm for semilinear elliptic equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(96)00021-1
– volume: 82
  start-page: 347
  year: 1983
  end-page: 375
  ident: CR15
  article-title: Nonlinear scalar field equations II: existence of infinitely many solutions
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/BF00250556
– year: 1993
  ident: CR21
  publication-title: Duality and Perturbation Methods in Critical Point Theory
  doi: 10.1017/CBO9780511551703
– volume: 129
  start-page: 787
  year: 1999
  end-page: 809
  ident: CR25
  article-title: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on
  publication-title: Proc. Roy. Soc. Edinb. A
  doi: 10.1017/S0308210500013147
– volume: 24
  start-page: 609
  year: 2019
  end-page: 646
  ident: CR23
  article-title: A note on deformation argument for normalized solutions of nonlinear Schrödinger equations and systems
  publication-title: Adv. Differ. Equ.
– volume: 257
  start-page: 3802
  year: 2009
  end-page: 3822
  ident: CR43
  article-title: Ground state solutions for some indefinite variational problems
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2009.09.013
– volume: 107
  start-page: 303
  year: 2013
  end-page: 339
  ident: CR12
  article-title: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pds072
– ident: CR19
– volume: 69
  start-page: 19
  year: 1979
  end-page: 30
  ident: CR38
  article-title: The principle of symmetric criticality
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01941322
– start-page: 597
  year: 2010
  end-page: 632
  ident: CR44
  publication-title: The Method of Nehari Manifold
– volume: 14
  start-page: 115
  year: 2014
  end-page: 136
  ident: CR22
  article-title: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2014-0104
– volume: 49
  start-page: 315
  year: 1982
  end-page: 344
  ident: CR30
  article-title: Symétrie et compacité dans les espaces de Sobolev
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(82)90072-6
– volume: 272
  start-page: 4998
  year: 2017
  end-page: 5037
  ident: CR5
  article-title: A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2017.01.025
– ident: CR31
– volume: 88
  start-page: 486
  year: 1983
  end-page: 490
  ident: CR18
  article-title: A relation between pointwise convergence of functions and convergence of functionals
  publication-title: Proc. Am. Math. Soc.
  doi: 10.2307/2044999
– volume: 23
  start-page: 829
  year: 2006
  end-page: 837
  ident: CR29
  article-title: Ground states of nonlinear Schrödinger equations with potentials
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2006.01.003
– volume: 275
  start-page: 516
  year: 2018
  end-page: 521
  ident: CR6
  article-title: Correction to “A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems” [J. Funct. Anal. 272 (2017) 4998–5037]
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2018.02.007
– volume: 371
  start-page: 707
  year: 2018
  end-page: 740
  ident: CR11
  article-title: Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension
  publication-title: Math. Ann.
  doi: 10.1007/s00208-018-1666-z
– volume: 106
  start-page: 583
  year: 2016
  end-page: 614
  ident: CR4
  article-title: Normalized solutions for a system of coupled cubic Schrödinger equations on
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2016.03.004
– ident: CR32
– volume: 4
  start-page: 561
  year: 2004
  end-page: 572
  ident: CR33
  article-title: On the Ambrosetti–Rabinowitz superlinear condition
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2004-0411
– volume: 32
  start-page: 4942
  year: 2019
  end-page: 4966
  ident: CR27
  article-title: Nonradial normalized solutions for nonlinear scalar field equations
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab435e
– ident: CR7
– volume: 100
  start-page: 75
  year: 2013
  end-page: 83
  ident: CR3
  article-title: Normalized solutions of nonlinear Schrödinger equations
  publication-title: Arch. Math.
  doi: 10.1007/s00013-012-0468-x
– volume: 82
  start-page: 313
  year: 1983
  end-page: 346
  ident: CR14
  article-title: Nonlinear scalar field equations I: existence of a ground state
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/BF00250555
– volume: 190
  start-page: 111604
  year: 2020
  ident: CR26
  article-title: Nonlinear scalar field equations with general nonlinearity
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2019.111604
– volume: 14
  start-page: 1923
  year: 2012
  end-page: 1953
  ident: CR36
  article-title: Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/351
– volume: 117
  start-page: 447
  year: 1993
  end-page: 460
  ident: CR8
  article-title: Infinitely many nonradial solutions of a Euclidean scalar field equation
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1993.1133
– volume: 269
  start-page: 6941
  year: 2020
  end-page: 6987
  ident: CR40
  article-title: Normalized ground states for the NLS equation with combined nonlinearities
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2020.05.016
– volume: 129
  start-page: 787
  year: 1999
  ident: 1828_CR25
  publication-title: Proc. Roy. Soc. Edinb. A
  doi: 10.1017/S0308210500013147
– volume: 14
  start-page: 349
  year: 1973
  ident: 1828_CR2
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– volume: 293
  start-page: 489
  year: 1981
  ident: 1828_CR13
  publication-title: C. R. Acad. Sci. Paris
– volume: 82
  start-page: 347
  year: 1983
  ident: 1828_CR15
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/BF00250556
– ident: 1828_CR31
  doi: 10.1016/S0294-1449(16)30428-0
– ident: 1828_CR19
– volume: 51
  start-page: 3533
  year: 2019
  ident: 1828_CR20
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/19M1243907
– ident: 1828_CR39
  doi: 10.1090/cbms/065
– volume-title: Minimax Theorems
  year: 1996
  ident: 1828_CR45
  doi: 10.1007/978-1-4612-4146-1
– volume: 275
  start-page: 516
  year: 2018
  ident: 1828_CR6
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2018.02.007
– volume: 371
  start-page: 707
  year: 2018
  ident: 1828_CR11
  publication-title: Math. Ann.
  doi: 10.1007/s00208-018-1666-z
– volume-title: Duality and Perturbation Methods in Critical Point Theory
  year: 1993
  ident: 1828_CR21
  doi: 10.1017/CBO9780511551703
– year: 2020
  ident: 1828_CR9
  publication-title: Math. Annalen
  doi: 10.1007/s00208-020-02000-w
– volume: 82
  start-page: 313
  year: 1983
  ident: 1828_CR14
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/BF00250555
– volume: 4
  start-page: 561
  year: 2004
  ident: 1828_CR33
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2004-0411
– volume: 269
  start-page: 6941
  year: 2020
  ident: 1828_CR40
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2020.05.016
– volume: 107
  start-page: 303
  year: 2013
  ident: 1828_CR12
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pds072
– volume: 69
  start-page: 19
  year: 1979
  ident: 1828_CR38
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01941322
– volume: 49
  start-page: 315
  year: 1982
  ident: 1828_CR30
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(82)90072-6
– start-page: 597
  volume-title: The Method of Nehari Manifold
  year: 2010
  ident: 1828_CR44
– volume: 23
  start-page: 829
  year: 2006
  ident: 1828_CR29
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2006.01.003
– ident: 1828_CR32
  doi: 10.1016/S0294-1449(16)30422-X
– volume: 12
  start-page: 1177
  year: 2019
  ident: 1828_CR1
  publication-title: Anal. PDE
  doi: 10.2140/apde.2019.12.1177
– volume: 117
  start-page: 447
  year: 1993
  ident: 1828_CR8
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1993.1133
– volume: 58
  start-page: 961
  year: 2004
  ident: 1828_CR34
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2004.03.034
– volume: 55
  start-page: 149
  year: 1977
  ident: 1828_CR42
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01626517
– volume: 14
  start-page: 115
  year: 2014
  ident: 1828_CR22
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2014-0104
– volume: 24
  start-page: 609
  year: 2019
  ident: 1828_CR23
  publication-title: Adv. Differ. Equ.
– volume: 28
  start-page: 1633
  year: 1997
  ident: 1828_CR24
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(96)00021-1
– volume: 8
  start-page: 455
  year: 2008
  ident: 1828_CR28
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2008-0302
– volume: 106
  start-page: 583
  year: 2016
  ident: 1828_CR4
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2016.03.004
– volume: 100
  start-page: 75
  year: 2013
  ident: 1828_CR3
  publication-title: Arch. Math.
  doi: 10.1007/s00013-012-0468-x
– ident: 1828_CR7
  doi: 10.1007/s00526-018-1476-x
– volume: 353
  start-page: 229
  year: 2017
  ident: 1828_CR10
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-017-2866-1
– volume: 257
  start-page: 3802
  year: 2009
  ident: 1828_CR43
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2009.09.013
– ident: 1828_CR35
– volume: 372
  start-page: 2167
  year: 2019
  ident: 1828_CR17
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/7769
– volume: 32
  start-page: 1044
  year: 2019
  ident: 1828_CR37
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aaf2e0
– volume: 190
  start-page: 111604
  year: 2020
  ident: 1828_CR26
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2019.111604
– volume: 272
  start-page: 4998
  year: 2017
  ident: 1828_CR5
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2017.01.025
– ident: 1828_CR16
  doi: 10.1016/j.jfa.2021.108989
– volume: 88
  start-page: 486
  year: 1983
  ident: 1828_CR18
  publication-title: Proc. Am. Math. Soc.
  doi: 10.2307/2044999
– volume: 279
  start-page: 108610
  year: 2020
  ident: 1828_CR41
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2020.108610
– volume: 14
  start-page: 1923
  year: 2012
  ident: 1828_CR36
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/351
– volume: 32
  start-page: 4942
  year: 2019
  ident: 1828_CR27
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab435e
SSID ssj0015824
Score 2.6184602
Snippet In any dimension N ≥ 1 and for given mass m > 0 , we revisit the nonlinear scalar field equation with an L 2 constraint: - Δ u = f ( u ) - μ u in R N , ‖ u ‖ L...
In any dimension N≥1 and for given mass m>0, we revisit the nonlinear scalar field equation with an L2 constraint:...
In any dimension N ≥ 1 and for given mass m > 0, we revisit the nonlinear scalar field equation with an L 2 constraint:        −∆u = f (u) − µu in R N ,...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Analysis of PDEs
Calculus of Variations and Optimal Control; Optimization
Constraints
Control
Ground state
Lagrange multiplier
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinearity
Scalars
Systems Theory
Theoretical
Title A mass supercritical problem revisited
URI https://link.springer.com/article/10.1007/s00526-020-01828-z
https://www.proquest.com/docview/2450234572
https://hal.science/hal-03336029
Volume 59
WOSCitedRecordID wos000573287000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s9aAH32K1ShDxogvJPpLNsYilBy3ii96WZLOLgtaStD3017u7TeIDFfSaTB47s8l8wzw-gGNOUhngjCMVsghRHVOUGLeOskTasjAdBOmcbCLq9_lgEF-XTWFFVe1epSTdn7pudnOjSZANd3wDijmaNWDRuDtuCRtubh_q3AHjjsrWxC0UGfcTl60y39_jkztqPNpiyA9I80ty1Pmc7tr_3nYdVkuM6XXmm2IDFtRwE1au6gGtxRacdLwXA5u9YjJSuSzpDrySXcbLXcu5waLbcN-9uDvvoZIyAUnCyBgZg6QkwZakm2eKca0xIaEyGEWRTMkkTlmQ6CSUoaI-oZJFmmc8w1zKINUZJTvQHL4O1S54HEc-l0Sm3MZc1E9krKNQ0yhRPmHSb0FQaU7Icp64pbV4FvUkZKcDYXQgnA7ErAWn9TWj-TSNX6WPjEFqQTsIu9e5FPaYT8yyfBxPgxa0K3uJ8vMrBKbMYBHKItyCs8o-76d_fuTe38T3YRlbE7vivjY0x_lEHcCSnI6fivzQbcs3_EbanQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68QH3wFusZRHzRhWSPZPNYxFKxLeJF35Zks4uCVmnaPvTXu7tN4oEK-ppsjp3ZZL5lZr4P4IiTVAY440iFLEJUxxQlJqyjLJG2LEwHQToRm4g6Hd7txldFU1heVruXKUn3p66a3Rw1CbLbHd-AYo7G0zBLTcSyjPnXN_dV7oBxJ2Vr9i0UmfATF60y39_jUziafrDFkB-Q5pfkqIs5jeX_ve0KLBUY06tPFsUqTKneGiy2K4LWfB2O696zgc1ePnxVfVnIHXiFuozXdy3nBotuwF3j_PasiQrJBCQJIwNkHJKSBFuRbp4pxrXGhITKYBRFMiWTOGVBopNQhor6hEoWaZ7xDHMpg1RnlGzCTO-lp7bA4zjyuSQy5XbPRf1ExjoKNY0S5RMm_RoEpeWELPjErazFk6iYkJ0NhLGBcDYQ4xqcVNe8Ttg0fh19aBxSDbRE2M16S9hjPjHT8nE8CmqwW_pLFJ9fLjBlBotQFuEanJb-eT_98yO3_zb8AOabt-2WaF10LndgAVt3u0K_XZgZ9IdqD-bkaPCY9_fdEn0DROrdgQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiDt1jPIOKLLk32SDaPRS0Vayl44NuSbHZR0Fp6PfTXu7tNYxUVxNdkc81smG-Yme8DOOYklQHOOFIhixDVMUWJCesoS6RtC9NBkI7FJqJmkz8-xq2pKX7X7T4pSY5nGixLU7tf6WS6Ugy-OZoSZFMf3wBkjkazMEdtI73N128fijoC407W1uQwFJlQFOdjM9_f41Nomn2yjZFTqPNLodTFn9rK_998FZZz7OlVx5tlDWZUex2Wbgri1t4GnFS9VwOnvd6go7oyl0HwctUZr-tG0Q1G3YT72uXdeR3lUgpIEkb6yDgqJQm24t08U4xrjQkJlcEuimRKJnHKgkQnoQwV9QmVLNI84xnmUgapzijZglL7ra22weM48rkkMuU2F6N-ImMdhZpGifIJk34ZgokVhcx5xq3cxYsoGJKdDYSxgXA2EKMynBbXdMYsG7-uPjLOKRZagux6tSHsMZ-Yz_JxPAzKsDfxnch_y57AlBmMQlmEy3A28dXH6Z8fufO35Yew0LqoicZV83oXFrH1tuv_24NSvztQ-zAvh_3nXvfA7dZ3jkTmZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mass+supercritical+problem+revisited&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Jeanjean%2C+Louis&rft.au=Lu%2C+Sheng-Sen&rft.date=2020-10-01&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=59&rft.issue=5&rft_id=info:doi/10.1007%2Fs00526-020-01828-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00526_020_01828_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon