A mass supercritical problem revisited

In any dimension N ≥ 1 and for given mass m > 0 , we revisit the nonlinear scalar field equation with an L 2 constraint: - Δ u = f ( u ) - μ u in R N , ‖ u ‖ L 2 ( R N ) 2 = m , u ∈ H 1 ( R N ) , ( P m ) where μ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calculus of variations and partial differential equations Ročník 59; číslo 5
Hlavní autoři: Jeanjean, Louis, Lu, Sheng-Sen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0944-2669, 1432-0835
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In any dimension N ≥ 1 and for given mass m > 0 , we revisit the nonlinear scalar field equation with an L 2 constraint: - Δ u = f ( u ) - μ u in R N , ‖ u ‖ L 2 ( R N ) 2 = m , u ∈ H 1 ( R N ) , ( P m ) where μ ∈ R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to ( P m ) and reveal the basic behavior of the ground state energy E m as m > 0 varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other L 2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any N ≥ 2 and establish the existence and multiplicity of nonradial sign-changing solutions when N ≥ 4 . Finally we propose two open problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-020-01828-z