SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm
A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustne...
Gespeichert in:
| Veröffentlicht in: | Journal of optimization theory and applications Jg. 195; H. 3; S. 919 - 952 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2022
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A wide class of problems involves the minimization of a coercive and differentiable function
F
on
R
N
whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm
SABRINA
that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by
SABRINA
. Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of
SABRINA
with respect to state-of-the-art gradient-based stochastic optimization methods. |
|---|---|
| AbstractList | A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradientbased optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called SABRINA (StochAstic suBspace majoRIzation-miNimization Algorithm) that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA. Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods. A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm SABRINA that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA . Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods. A wide class of problems involves the minimization of a coercive and differentiable function F on RN whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm SABRINA that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA. Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods. |
| Author | Chouzenoux, Emilie Fest, Jean-Baptiste |
| Author_xml | – sequence: 1 givenname: Emilie orcidid: 0000-0003-3631-6093 surname: Chouzenoux fullname: Chouzenoux, Emilie organization: Centre de Vision Numérique, Inria, CentraleSupélec, Université Paris-Saclay – sequence: 2 givenname: Jean-Baptiste surname: Fest fullname: Fest, Jean-Baptiste email: jean-baptiste.fest@centralesupelec.fr organization: Centre de Vision Numérique, Inria, CentraleSupélec, Université Paris-Saclay |
| BackLink | https://hal.science/hal-03793623$$DView record in HAL |
| BookMark | eNp9kE1PwjAYxxuDiYB-AU9LPHmY9mVbV2-DqJCAJqLnpm-DEtiwHSb46S2MaOKBQ9u0z__39MmvBzpVXRkArhG8QxDSe48gS2kMMQ4LhX13BroopSTGOc07oAv3JYIJuwA975cQQpbTpAsGs2LwNn4pHqIimjW1WgjfWBXNttJvhDLRVCxrZ79FY-sqntrKro-XqFjNQ6VZrC_BeSlW3lwdzz74eHp8H47iyevzeFhMYkVS0sSaGSkQYQmSkBgttEqlxsKYLC9TKTOIsjIvqdRaq0TgTKcSE5lIKhmRSivSB7dt34VY8Y2za-F2vBaWj4oJ379BQhnJMPlCIXvTZjeu_twa3_BlvXVVGI9jSrIkZ0kI9gFuU8rV3jtT_rZFkO-98tYrD_L4wSvfBSj_BynbHJQ0TtjVaZS0qA__VHPj_qY6Qf0AIGWPUQ |
| CitedBy_id | crossref_primary_10_3934_fods_2025016 crossref_primary_10_1002_adfm_202402343 crossref_primary_10_1088_1361_6420_acbdb9 crossref_primary_10_1007_s12065_023_00897_1 |
| Cites_doi | 10.23919/EUSIPCO.2017.8081215 10.1016/B978-0-12-604550-5.50015-8 10.1109/LSP.2019.2926926 10.1137/11085997X 10.1109/LSP.2016.2593589 10.1109/83.392335 10.1137/16M1080173 10.1007/s10589-019-00060-6 10.1109/TSP.2016.2601299 10.1109/ICASSP.2015.7178361 10.23919/EUSIPCO54536.2021.9616274 10.1007/s00041-008-9045-x 10.1109/TSP.2022.3172619 10.1109/ICIP.2016.7532949 10.1109/TSP.2017.2709265 10.1007/BF01589116 10.1007/BF00929359 10.1287/moor.2015.0735 10.1007/s10994-007-5022-x 10.1145/1961189.1961199 10.1016/j.sigpro.2013.09.026 10.1109/ICASSP40776.2020.9053284 10.1007/s00245-019-09617-7 10.1109/TCI.2021.3081059 10.1016/j.media.2021.102341 10.1137/S1052623497331063 10.1109/TSP.2020.2983150 10.1214/aoms/1177729586 10.1109/TIP.2010.2103083 10.1609/aaai.v30i1.10200 10.1109/TIP.2007.904387 10.1109/TIP.2005.864173 10.1137/140987845 10.1007/978-3-7908-2604-3_16 10.1007/s10589-020-00220-z 10.1137/0910004 10.1364/AO.55.002346 10.1109/ICIP40778.2020.9190921 10.1142/9789812709356_0012 10.1137/140954362 10.1109/JSTSP.2015.2505682 10.23919/EUSIPCO54536.2021.9616050 10.1007/BF02832325 10.1137/08072019X 10.1214/aos/1018031103 10.1109/JSTSP.2015.2496908 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES |
| DOI | 10.1007/s10957-022-02122-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2878 |
| EndPage | 952 |
| ExternalDocumentID | oai:HAL:hal-03793623v1 10_1007_s10957_022_02122_y |
| GrantInformation_xml | – fundername: European Research Council grantid: ERC-2019-STG-850925 funderid: http://dx.doi.org/10.13039/501100000781 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c353t-d9eba13941b03edadc5bd2aee68f5bb6016f8f7bdddc4a26d5b23b4b7b93bcdc3 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878452800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3239 |
| IngestDate | Tue Oct 28 06:37:40 EDT 2025 Wed Nov 05 01:58:21 EST 2025 Sat Nov 29 06:02:32 EST 2025 Tue Nov 18 21:26:11 EST 2025 Fri Feb 21 02:44:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Subspace acceleration Majorization-minimization Stochastic optimization Binary logistic regression Image reconstruction Convergence analysis subspace acceleration binary logistic regression image reconstruction convergence analysis Majorization-Minimization |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-d9eba13941b03edadc5bd2aee68f5bb6016f8f7bdddc4a26d5b23b4b7b93bcdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3631-6093 |
| OpenAccessLink | https://hal.science/hal-03793623 |
| PQID | 2736489462 |
| PQPubID | 48247 |
| PageCount | 34 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03793623v1 proquest_journals_2736489462 crossref_primary_10_1007_s10957_022_02122_y crossref_citationtrail_10_1007_s10957_022_02122_y springer_journals_10_1007_s10957_022_02122_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of optimization theory and applications |
| PublicationTitleAbbrev | J Optim Theory Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Chouzenoux, Jezierska, Pesquet, Talbot (CR23) 2013; 6 Huang, Chouzenoux, Elvira (CR43) 2021; 7 Bertsekas (CR6) 2016 CR39 Florescu, Chouzenoux, Pesquet, Ciuciu, Ciochina (CR37) 2014; 103 Duflo (CR31) 2013 CR36 Konečnỳ, Liu, Richtárik, Takáč (CR46) 2015; 10 CR35 CR34 Byrd, Hansen, Nocedal, Singer (CR16) 2016; 26 CR33 CR32 Chouzenoux, Pesquet (CR24) 2016; 23 CR30 CR74 CR72 CR70 Tieleman, Hinton (CR71) 2012; 4 Bolte, Pauwels (CR9) 2016; 41 Sonneveld (CR68) 1989; 10 Shi, Shen (CR67) 2007; 24 Zhang, Kwok, Yeung (CR73) 2007; 69 CR8 CR47 CR45 Allain, Idier, Goussard (CR3) 2006; 15 Atchadé, Fort, Moulines (CR4) 2017; 18 Bottou, Curtis, Nocedal (CR13) 2018; 60 CR42 CR41 Rosasco, Villa, Vu (CR64) 2020; 82 Sun, Babu, Palomar (CR69) 2016; 65 Briceño-Arias, Chierchia, Chouzenoux, Pesquet (CR15) 2019; 72 Pereyra, Schniter, Chouzenoux, Pesquet, Tourneret, Hero, McLaughlin (CR58) 2015; 10 Chang, Lin (CR21) 2011; 2 CR19 Combettes, Pesquet (CR26) 2016; 1 CR18 CR17 CR59 CR14 CR57 CR12 CR56 CR10 Geman, Yang (CR40) 1995; 4 CR54 Miele, Cantrell (CR53) 1969; 3 CR50 Liu, Nocedal (CR48) 1989; 45 Delyon, Lavielle, Moulines (CR27) 1999; 27 Chouzenoux, Pesquet (CR25) 2017; 65 Jacobson, Fessler (CR44) 2007; 16 Chouzenoux, Idier, Moussaoui (CR22) 2010; 20 Loizou, Richtárik (CR49) 2020; 77 Robini, Zhu (CR63) 2015; 8 Bertsekas, Tsitsiklis (CR7) 2000; 10 CR29 Marnissi, Chouzenoux, Benazza-Benyahia, Pesquet (CR51) 2020; 68 Sghaier, Chouzenoux, Pesquet, Muller (CR66) 2022; 77 CR28 Gadat (CR38) 2017 Bell, Xu, Zhang (CR5) 2016; 55 Akyildiz, Chouzenoux, Elvira, Míguez (CR2) 2019; 26 Absil, Gallivan (CR1) 2009; 47 CR65 CR20 Nesterov (CR55) 1983; 269 Meyer (CR52) 2006 CR62 CR61 CR60 Bordes, Bottou, Gallinari (CR11) 2009; 10 ÖD Akyildiz (2122_CR2) 2019; 26 A Florescu (2122_CR37) 2014; 103 D Geman (2122_CR40) 1995; 4 2122_CR36 2122_CR35 P-A Meyer (2122_CR52) 2006 2122_CR34 Z-J Shi (2122_CR67) 2007; 24 E Chouzenoux (2122_CR24) 2016; 23 2122_CR39 2122_CR72 Y Huang (2122_CR43) 2021; 7 2122_CR70 A Bordes (2122_CR11) 2009; 10 2122_CR33 DC Liu (2122_CR48) 1989; 45 E Chouzenoux (2122_CR23) 2013; 6 2122_CR32 MC Robini (2122_CR63) 2015; 8 2122_CR30 2122_CR74 A Miele (2122_CR53) 1969; 3 J Konečnỳ (2122_CR46) 2015; 10 MW Jacobson (2122_CR44) 2007; 16 Y Sun (2122_CR69) 2016; 65 P Sonneveld (2122_CR68) 1989; 10 YE Nesterov (2122_CR55) 1983; 269 2122_CR47 N Loizou (2122_CR49) 2020; 77 2122_CR45 C-C Chang (2122_CR21) 2011; 2 DP Bertsekas (2122_CR7) 2000; 10 2122_CR42 2122_CR41 L Bottou (2122_CR13) 2018; 60 M Duflo (2122_CR31) 2013 M Allain (2122_CR3) 2006; 15 T Bell (2122_CR5) 2016; 55 2122_CR59 2122_CR14 2122_CR57 2122_CR12 2122_CR56 2122_CR19 Y Marnissi (2122_CR51) 2020; 68 2122_CR18 2122_CR17 DP Bertsekas (2122_CR6) 2016 RH Byrd (2122_CR16) 2016; 26 2122_CR50 M Sghaier (2122_CR66) 2022; 77 YF Atchadé (2122_CR4) 2017; 18 2122_CR10 2122_CR54 M Pereyra (2122_CR58) 2015; 10 E Chouzenoux (2122_CR25) 2017; 65 B Delyon (2122_CR27) 1999; 27 LM Briceño-Arias (2122_CR15) 2019; 72 2122_CR8 L Rosasco (2122_CR64) 2020; 82 PL Combettes (2122_CR26) 2016; 1 2122_CR29 Z Zhang (2122_CR73) 2007; 69 2122_CR28 2122_CR62 2122_CR61 T Tieleman (2122_CR71) 2012; 4 2122_CR60 E Chouzenoux (2122_CR22) 2010; 20 2122_CR65 2122_CR20 J Bolte (2122_CR9) 2016; 41 P-A Absil (2122_CR1) 2009; 47 S Gadat (2122_CR38) 2017 |
| References_xml | – ident: CR45 – ident: CR70 – volume: 41 start-page: 442 issue: 2 year: 2016 end-page: 465 ident: CR9 article-title: Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs publication-title: Math. Oper. Res. – volume: 77 start-page: 653 issue: 3 year: 2020 end-page: 710 ident: CR49 article-title: Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace descent methods publication-title: Comput. Optim. Appl. – ident: CR74 – volume: 6 start-page: 563 issue: 1 year: 2013 end-page: 591 ident: CR23 article-title: A majorize-minimize subspace approach for image regularization publication-title: SIAM J. Imaging Sci. – ident: CR39 – ident: CR12 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR61 – volume: 77 year: 2022 ident: CR66 article-title: A novel task-based reconstruction approach for digital breast tomosynthesis publication-title: Med. Image Anal. – ident: CR8 – volume: 20 start-page: 1517 issue: 6 year: 2010 end-page: 1528 ident: CR22 article-title: A majorize-minimize strategy for subspace optimization applied to image restoration publication-title: IEEE Trans. Image Process. – volume: 26 start-page: 1257 issue: 8 year: 2019 end-page: 1261 ident: CR2 article-title: A probabilistic incremental proximal gradient method publication-title: IEEE Signal Process. Lett. – year: 2017 ident: CR38 publication-title: Stochastic optimization algorithms, non asymptotic and asymptotic behaviour – ident: CR42 – volume: 23 start-page: 1284 issue: 9 year: 2016 end-page: 1288 ident: CR24 article-title: Convergence rate analysis of the majorize-minimize subspace algorithm publication-title: IEEE Signal Process. Lett. – ident: CR19 – volume: 16 start-page: 2411 issue: 10 year: 2007 end-page: 2422 ident: CR44 article-title: An expanded theoretical treatment of iteration-dependent Majorize-Minimize algorithms publication-title: IEEE Trans. Image Process. – ident: CR50 – volume: 10 start-page: 242 issue: 2 year: 2015 end-page: 255 ident: CR46 article-title: Mini-batch semi-stochastic gradient descent in the proximal setting publication-title: IEEE J. Sel. Top. Signal Process. – ident: CR57 – ident: CR32 – volume: 68 start-page: 2356 year: 2020 end-page: 2369 ident: CR51 article-title: Majorize-minimize adapted Metropolis–Hastings algorithm publication-title: IEEE Trans. Signal Process. – ident: CR60 – ident: CR36 – volume: 55 start-page: 2346 issue: 9 year: 2016 end-page: 2352 ident: CR5 article-title: Method for out-of-focus camera calibration publication-title: Appl. Opt. – year: 2013 ident: CR31 publication-title: Random iterative models – volume: 47 start-page: 997 issue: 2 year: 2009 end-page: 1018 ident: CR1 article-title: Accelerated line-search and trust-region methods publication-title: SIAM J. Numer. Anal. – volume: 72 start-page: 707 issue: 3 year: 2019 end-page: 726 ident: CR15 article-title: A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression publication-title: Comput. Optim. Appl. – volume: 10 start-page: 224 issue: 2 year: 2015 end-page: 241 ident: CR58 article-title: A survey of stochastic simulation and optimization methods in signal processing publication-title: IEEE J. Sel. Top. Signal Process. – ident: CR18 – volume: 103 start-page: 285 year: 2014 end-page: 295 ident: CR37 article-title: A majorize-minimize memory gradient method for complex-valued inverse problems publication-title: Signal Process. – volume: 2 start-page: 1 issue: 3 year: 2011 end-page: 27 ident: CR21 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 65 start-page: 4770 issue: 18 year: 2017 end-page: 4783 ident: CR25 article-title: A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation publication-title: IEEE Trans. Signal Process. – ident: CR47 – ident: CR72 – ident: CR14 – volume: 82 start-page: 891 year: 2020 end-page: 917 ident: CR64 article-title: Convergence of stochastic proximal gradient algorithm publication-title: Appl. Math. Optim. – ident: CR30 – ident: CR10 – ident: CR33 – volume: 4 start-page: 932 issue: 7 year: 1995 end-page: 946 ident: CR40 article-title: Nonlinear image recovery with half-quadratic regularization publication-title: IEEE Trans. Image Process. – volume: 69 start-page: 1 year: 2007 end-page: 33 ident: CR73 article-title: Surrogate maximization/minimization algorithms and extensions publication-title: Mach. Learn. – volume: 26 start-page: 1008 issue: 2 year: 2016 end-page: 1031 ident: CR16 article-title: A stochastic quasi-Newton method for large-scale optimization publication-title: SIAM J. Optim. – volume: 27 start-page: 94 issue: 1 year: 1999 end-page: 128 ident: CR27 article-title: Convergence of a stochastic approximation version of the EM algorithm publication-title: Ann. Stat. – ident: CR56 – volume: 10 start-page: 1737 year: 2009 end-page: 1754 ident: CR11 article-title: SGD-QN: careful quasi-Newton stochastic gradient descent publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 503 issue: 1 year: 1989 end-page: 528 ident: CR48 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – volume: 3 start-page: 459 issue: 6 year: 1969 end-page: 470 ident: CR53 article-title: Study on a memory gradient method for the minimization of functions publication-title: J. Optim. Theory Appl. – volume: 10 start-page: 627 issue: 3 year: 2000 end-page: 642 ident: CR7 article-title: Gradient convergence in gradient methods with errors publication-title: SIAM J. Optim. – year: 2006 ident: CR52 publication-title: Martingales and stochastic integrals I – volume: 10 start-page: 36 issue: 1 year: 1989 end-page: 52 ident: CR68 article-title: CGS: A fast Lanczos-type solver for nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. – ident: CR65 – year: 2016 ident: CR6 publication-title: Nonlinear Programming – ident: CR17 – volume: 7 start-page: 531 year: 2021 end-page: 546 ident: CR43 article-title: Probabilistic modeling and inference for sequential space-varying blur identification publication-title: IEEE Trans. Comput. Imaging – volume: 4 start-page: 26 issue: 2 year: 2012 end-page: 31 ident: CR71 article-title: RMSProp: divide the gradient by a running average of its recent magnitude publication-title: COURSERA Neural Netw. Mach. Learn. – volume: 18 start-page: 1 year: 2017 end-page: 33 ident: CR4 article-title: On perturbed proximal gradient algorithms publication-title: J. Mach. Learn. Res. – ident: CR34 – volume: 24 start-page: 367 issue: 1 year: 2007 end-page: 376 ident: CR67 article-title: Convergence of supermemory gradient method publication-title: J. Appl. Math. Comput. – volume: 60 start-page: 223 issue: 2 year: 2018 end-page: 311 ident: CR13 article-title: Optimization methods for large-scale machine learning publication-title: Siam Rev. – volume: 8 start-page: 1752 issue: 3 year: 2015 end-page: 1797 ident: CR63 article-title: Generic half-quadratic optimization for image reconstruction publication-title: SIAM J. Imaging Sci. – ident: CR59 – volume: 15 start-page: 1130 issue: 5 year: 2006 end-page: 1142 ident: CR3 article-title: On global and local convergence of half-quadratic algorithms publication-title: IEEE Trans. Image Process. – volume: 1 start-page: 13 issue: 1 year: 2016 end-page: 37 ident: CR26 article-title: Stochastic approximations and perturbations in forward-backward splitting for monotone operators publication-title: Pure Appl. Funct. Anal. – ident: CR28 – ident: CR41 – ident: CR62 – volume: 269 start-page: 543 year: 1983 end-page: 547 ident: CR55 article-title: A method for solving the convex programming problem with convergence rate publication-title: Dokl. akad. nauk Sssr – volume: 65 start-page: 794 issue: 3 year: 2016 end-page: 816 ident: CR69 article-title: Majorization-minimization algorithms in signal processing, communications, and machine learning publication-title: IEEE Trans. Signal Process. – ident: CR20 – ident: 2122_CR19 – ident: 2122_CR30 doi: 10.23919/EUSIPCO.2017.8081215 – volume-title: Stochastic optimization algorithms, non asymptotic and asymptotic behaviour year: 2017 ident: 2122_CR38 – ident: 2122_CR62 doi: 10.1016/B978-0-12-604550-5.50015-8 – volume: 26 start-page: 1257 issue: 8 year: 2019 ident: 2122_CR2 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2926926 – volume: 6 start-page: 563 issue: 1 year: 2013 ident: 2122_CR23 publication-title: SIAM J. Imaging Sci. doi: 10.1137/11085997X – volume: 23 start-page: 1284 issue: 9 year: 2016 ident: 2122_CR24 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2593589 – volume: 4 start-page: 932 issue: 7 year: 1995 ident: 2122_CR40 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.392335 – volume: 269 start-page: 543 year: 1983 ident: 2122_CR55 publication-title: Dokl. akad. nauk Sssr – ident: 2122_CR54 – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 2122_CR13 publication-title: Siam Rev. doi: 10.1137/16M1080173 – volume-title: Nonlinear Programming year: 2016 ident: 2122_CR6 – volume: 72 start-page: 707 issue: 3 year: 2019 ident: 2122_CR15 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00060-6 – ident: 2122_CR50 – volume: 65 start-page: 794 issue: 3 year: 2016 ident: 2122_CR69 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2601299 – ident: 2122_CR39 – ident: 2122_CR35 doi: 10.1109/ICASSP.2015.7178361 – ident: 2122_CR41 doi: 10.23919/EUSIPCO54536.2021.9616274 – ident: 2122_CR45 – ident: 2122_CR18 doi: 10.1007/s00041-008-9045-x – ident: 2122_CR32 doi: 10.1109/TSP.2022.3172619 – ident: 2122_CR17 doi: 10.1109/ICIP.2016.7532949 – ident: 2122_CR28 – volume: 65 start-page: 4770 issue: 18 year: 2017 ident: 2122_CR25 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2709265 – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 2122_CR48 publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 3 start-page: 459 issue: 6 year: 1969 ident: 2122_CR53 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00929359 – volume: 41 start-page: 442 issue: 2 year: 2016 ident: 2122_CR9 publication-title: Math. Oper. Res. doi: 10.1287/moor.2015.0735 – volume: 69 start-page: 1 year: 2007 ident: 2122_CR73 publication-title: Mach. Learn. doi: 10.1007/s10994-007-5022-x – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 2122_CR21 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 103 start-page: 285 year: 2014 ident: 2122_CR37 publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.09.026 – ident: 2122_CR59 doi: 10.1109/ICASSP40776.2020.9053284 – volume: 82 start-page: 891 year: 2020 ident: 2122_CR64 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-019-09617-7 – ident: 2122_CR34 – volume: 1 start-page: 13 issue: 1 year: 2016 ident: 2122_CR26 publication-title: Pure Appl. Funct. Anal. – volume: 7 start-page: 531 year: 2021 ident: 2122_CR43 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2021.3081059 – ident: 2122_CR65 – volume: 77 year: 2022 ident: 2122_CR66 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102341 – volume: 10 start-page: 627 issue: 3 year: 2000 ident: 2122_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497331063 – volume: 68 start-page: 2356 year: 2020 ident: 2122_CR51 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2983150 – ident: 2122_CR42 – ident: 2122_CR61 doi: 10.1214/aoms/1177729586 – ident: 2122_CR56 – ident: 2122_CR8 – volume: 20 start-page: 1517 issue: 6 year: 2010 ident: 2122_CR22 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2103083 – ident: 2122_CR47 doi: 10.1609/aaai.v30i1.10200 – ident: 2122_CR10 – ident: 2122_CR33 – ident: 2122_CR14 – volume: 16 start-page: 2411 issue: 10 year: 2007 ident: 2122_CR44 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.904387 – volume: 15 start-page: 1130 issue: 5 year: 2006 ident: 2122_CR3 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.864173 – ident: 2122_CR70 – volume: 8 start-page: 1752 issue: 3 year: 2015 ident: 2122_CR63 publication-title: SIAM J. Imaging Sci. doi: 10.1137/140987845 – ident: 2122_CR12 doi: 10.1007/978-3-7908-2604-3_16 – volume: 77 start-page: 653 issue: 3 year: 2020 ident: 2122_CR49 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00220-z – volume: 10 start-page: 36 issue: 1 year: 1989 ident: 2122_CR68 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0910004 – volume: 55 start-page: 2346 issue: 9 year: 2016 ident: 2122_CR5 publication-title: Appl. Opt. doi: 10.1364/AO.55.002346 – ident: 2122_CR60 – volume: 4 start-page: 26 issue: 2 year: 2012 ident: 2122_CR71 publication-title: COURSERA Neural Netw. Mach. Learn. – ident: 2122_CR20 doi: 10.1109/ICIP40778.2020.9190921 – ident: 2122_CR57 – ident: 2122_CR72 doi: 10.1142/9789812709356_0012 – ident: 2122_CR29 – volume: 10 start-page: 1737 year: 2009 ident: 2122_CR11 publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 1008 issue: 2 year: 2016 ident: 2122_CR16 publication-title: SIAM J. Optim. doi: 10.1137/140954362 – volume: 10 start-page: 242 issue: 2 year: 2015 ident: 2122_CR46 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2015.2505682 – ident: 2122_CR74 – volume-title: Random iterative models year: 2013 ident: 2122_CR31 – ident: 2122_CR36 doi: 10.23919/EUSIPCO54536.2021.9616050 – volume: 24 start-page: 367 issue: 1 year: 2007 ident: 2122_CR67 publication-title: J. Appl. Math. Comput. doi: 10.1007/BF02832325 – volume: 47 start-page: 997 issue: 2 year: 2009 ident: 2122_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/08072019X – volume: 27 start-page: 94 issue: 1 year: 1999 ident: 2122_CR27 publication-title: Ann. Stat. doi: 10.1214/aos/1018031103 – volume-title: Martingales and stochastic integrals I year: 2006 ident: 2122_CR52 – volume: 10 start-page: 224 issue: 2 year: 2015 ident: 2122_CR58 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2015.2496908 – volume: 18 start-page: 1 year: 2017 ident: 2122_CR4 publication-title: J. Mach. Learn. Res. |
| SSID | ssj0009874 |
| Score | 2.3957968 |
| Snippet | A wide class of problems involves the minimization of a coercive and differentiable function
F
on
R
N
whose gradient cannot be evaluated in an exact manner. In... A wide class of problems involves the minimization of a coercive and differentiable function F on RN whose gradient cannot be evaluated in an exact manner. In... A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 919 |
| SubjectTerms | Algorithms Applications of Mathematics Calculus of Variations and Optimal Control; Optimization Convergence Engineering Engineering Sciences Errors Image processing Machine learning Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Robustness (mathematics) Signal and Image processing Stochastic processes Subspaces Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9EEf_BanU4r4poEuabvUt04cE9wQp7K30ny5yT5krYP99yZdu01RQR-TXD-4u1zuyN3vAM4pZlKHyQrpzSSQ9v8V8rknkRS-Tbjt2jxSabOJaqtFOx3_PisKi_Ns9_xKMrXUS8VuvltFJvvcwJJjNC3AqmvQZkyM3n5eQO3SHHsZI4KJn5XKfP-OT8dRoWuSIZc8zS-Xo-mZU9_6399uw2bmY1rBTCl2YEUOd2FjCXlQj5pzuNZ4D2rtoPZw2wqurMBqJyPejQx6s2WMig6ppdWMXkfjrGATNXvD3iAbWEH_Ra8k3cE-PNVvHq8bKGuugDhxSYKEL1mk3T-nwmwiRSS4ywSOpPSochkzKC2KqioTQnAnwp5wGSbMYVXmE8YFJwdQHI6G8hAsaqYwi5QniKOoJqwobjpZM8ypw3kJKjmPQ54hj5sGGP1wgZlsuBVqboUpt8JpCS7mz7zNcDd-pT7TopsTGsjsRnAXmjmbaAukfbxJpQTlXLJhtlHjUHtvnkN9x8MluMwluVj--ZNHfyM_hnVslCFNhClDMRm_yxNY45OkF49PUwX-AIsO6j4 priority: 102 providerName: Springer Nature |
| Title | SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm |
| URI | https://link.springer.com/article/10.1007/s10957-022-02122-y https://www.proquest.com/docview/2736489462 https://hal.science/hal-03793623 |
| Volume | 195 |
| WOSCitedRecordID | wos000878452800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB714AEeoFwi9JCFeIMVzq6PNS_IqVq1goQo4Si8WN6rSdUmpXEr9d93xlknpRJ94WWkPey1PLszs9f3AbyVXFmcJjuGg8kwjP8dy3RimTVZKHQYh7p0NdlE2uvJo6Os7xfcZv5YZWMTa0NtpprWyD-gm00imUUJ_3T-hxFrFO2uegqNVVhHRx0Tg0H689cSdFc2KMycCS4yf2nGX53L4pRRCYGcc3b9l2NaHdGxyFsx551t0tr77D_53-_egMc-7gzyeUd5Cit28gwe3UIjxFR3AeE6ew6dYd4ZHPbyj0EeDKupHpWE6ByQocFptg265Qk2M7_EybrjyfjMJ4L89BhLqtHZC_i-v_dt94B5wgWmRSwqZjKrSgwJo7YKhTWl0bEyvLQ2kS5WipBbnHSpMsboqOSJiRUXKlKpyoTSRouXsDaZTuwrCCRlcVW6xIjISazYdprYrRXXMtK6Be3mbxfao5ETKcZpscRRJg0VqKGi1lBx3YJ3i2fO51gc99Z-g0pcVCQY7YP8S0F5oUCrhHHfVbsFW43WCj94Z8VSZS143-h9WfzvJl_f_7ZNeMipw9WHYbZgrbq4tNvwQF9V49nFTt11d2C9s9frDzD1OWUou-EuSf61ln2S6RBlP_6NcjD8cQPfpPwK |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61BYlygPJSUwqsEJzAYmPvw4tUVVugSpSHEC1Sb8bPJlWbhGZblD_Fb8Sz2U0KEr310KMf65XX34zH65lvAN5wqqw_JjvihckQb_87kunEEmuykOkwDrV0ZbKJtN_nR0fZ1xX4XcfCoFtlrRNLRW3GGv-Rf_DbbBLxLEro7uQnwaxReLtap9CYw6JjZ7_8kW260_7s1_ctpftfDj-1SJVVgGgWs4KYzCrp7Z6oqUJmjTQ6VoZKaxPuYqWQnsRxlypjjI4kTUysKFORSlXGlDaa-XFX4U7EeIIS1UnJkuSX16zPlDDKsipIpwrVy-KUYAuSqlMy-2sjXB2gG-YVG_efa9lyt9t_eNu-0wY8qOzqIJ8LwiNYsaPHcP8K26Iv9RYUtdMnsHeQ731r9_OPQR4cFGM9kMhYHaAinUhtg5488dOaB6mS3nA0PKsKQX567FuKwdlT-H4jU3oGa6PxyG5CwLGKKukSwyLHfcem05i9W1HNI60b0KxXV-iKbR2TfpyKJU80IkJ4RIgSEWLWgHeLZyZzrpFre7_2oFl0RJrwVt4VWBcyr3W9XXvZbMB2jRJRKaepWEKkAe9rnC2b___KretHewX3Woe9rui2-53nsE4R7KXjzzasFecX9gXc1ZfFcHr-shSbAH7cNP7-ABtLVgE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KULtgTciUMoKwQmsbux9eJEQ2rSNGrVZRS1Ivbl-NkFtkjZLUf4avw57400KEr31wNGP9crrz-OZ9cw3AO8oFtqayQbZzaSQ1f8NymSikVZZSGQYh5KbKtlEWhT05CTrr8CvOhbGuVXWMrES1Gos3T_ybXvMJhHNogRvG-8W0d_tfJlcIpdByt201uk05hA50LOf1nybfu7u2rV-j3Fn7-vOPvIZBpAkMSmRyrTgVgeKWiIkWnElY6Ew1zqhJhbCUZUYalKhlJIRx4mKBSYiEqnIiJBKEjvuKqylxBo9DVhr7xX9oyXlL605oDEimGQ-ZMcH7mVxilyLo1jHaPbHsbg6cE6ZNzTevy5pq7Ov8_B__mqP4IHXuIN8vkUew4oePYGNGzyMttRbkNdOn0L7OG8fdYv8U5AHx-VYDrjjsg6ciJ1wqYMe_26nNQ9fRb3haHjhC0F-fmZbysHFM_h2J1N6Do3ReKRfQEBdFRbcJIpEhtqOLSNdXm-BJY2kbEKrXmkmPQ-7SwdyzpYM0g4dzKKDVehgsyZ8WDwzmbOQ3Nr7rQXQoqMjEN_PD5mrC4mVx1bjvW41YbNGDPNia8qWcGnCxxpzy-Z_v_Ll7aO9gfsWduywWxy8gnXscF95BG1Co7z6oV_DPXldDqdXW34PBXB61wD8DZXbYFM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SABRINA%3A+A+Stochastic+Subspace+Majorization-Minimization+Algorithm&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Chouzenoux%2C+Emilie&rft.au=Fest%2C+Jean-Baptiste&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=195&rft.issue=3&rft.spage=919&rft.epage=952&rft_id=info:doi/10.1007%2Fs10957-022-02122-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |