SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm

A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 195; H. 3; S. 919 - 952
Hauptverfasser: Chouzenoux, Emilie, Fest, Jean-Baptiste
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2022
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm SABRINA that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA . Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods.
AbstractList A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradientbased optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called SABRINA (StochAstic suBspace majoRIzation-miNimization Algorithm) that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA. Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods.
A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm SABRINA that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA . Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods.
A wide class of problems involves the minimization of a coercive and differentiable function F on RN whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm SABRINA that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA. Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods.
Author Chouzenoux, Emilie
Fest, Jean-Baptiste
Author_xml – sequence: 1
  givenname: Emilie
  orcidid: 0000-0003-3631-6093
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
  organization: Centre de Vision Numérique, Inria, CentraleSupélec, Université Paris-Saclay
– sequence: 2
  givenname: Jean-Baptiste
  surname: Fest
  fullname: Fest, Jean-Baptiste
  email: jean-baptiste.fest@centralesupelec.fr
  organization: Centre de Vision Numérique, Inria, CentraleSupélec, Université Paris-Saclay
BackLink https://hal.science/hal-03793623$$DView record in HAL
BookMark eNp9kE1PwjAYxxuDiYB-AU9LPHmY9mVbV2-DqJCAJqLnpm-DEtiwHSb46S2MaOKBQ9u0z__39MmvBzpVXRkArhG8QxDSe48gS2kMMQ4LhX13BroopSTGOc07oAv3JYIJuwA975cQQpbTpAsGs2LwNn4pHqIimjW1WgjfWBXNttJvhDLRVCxrZ79FY-sqntrKro-XqFjNQ6VZrC_BeSlW3lwdzz74eHp8H47iyevzeFhMYkVS0sSaGSkQYQmSkBgttEqlxsKYLC9TKTOIsjIvqdRaq0TgTKcSE5lIKhmRSivSB7dt34VY8Y2za-F2vBaWj4oJ379BQhnJMPlCIXvTZjeu_twa3_BlvXVVGI9jSrIkZ0kI9gFuU8rV3jtT_rZFkO-98tYrD_L4wSvfBSj_BynbHJQ0TtjVaZS0qA__VHPj_qY6Qf0AIGWPUQ
CitedBy_id crossref_primary_10_3934_fods_2025016
crossref_primary_10_1002_adfm_202402343
crossref_primary_10_1088_1361_6420_acbdb9
crossref_primary_10_1007_s12065_023_00897_1
Cites_doi 10.23919/EUSIPCO.2017.8081215
10.1016/B978-0-12-604550-5.50015-8
10.1109/LSP.2019.2926926
10.1137/11085997X
10.1109/LSP.2016.2593589
10.1109/83.392335
10.1137/16M1080173
10.1007/s10589-019-00060-6
10.1109/TSP.2016.2601299
10.1109/ICASSP.2015.7178361
10.23919/EUSIPCO54536.2021.9616274
10.1007/s00041-008-9045-x
10.1109/TSP.2022.3172619
10.1109/ICIP.2016.7532949
10.1109/TSP.2017.2709265
10.1007/BF01589116
10.1007/BF00929359
10.1287/moor.2015.0735
10.1007/s10994-007-5022-x
10.1145/1961189.1961199
10.1016/j.sigpro.2013.09.026
10.1109/ICASSP40776.2020.9053284
10.1007/s00245-019-09617-7
10.1109/TCI.2021.3081059
10.1016/j.media.2021.102341
10.1137/S1052623497331063
10.1109/TSP.2020.2983150
10.1214/aoms/1177729586
10.1109/TIP.2010.2103083
10.1609/aaai.v30i1.10200
10.1109/TIP.2007.904387
10.1109/TIP.2005.864173
10.1137/140987845
10.1007/978-3-7908-2604-3_16
10.1007/s10589-020-00220-z
10.1137/0910004
10.1364/AO.55.002346
10.1109/ICIP40778.2020.9190921
10.1142/9789812709356_0012
10.1137/140954362
10.1109/JSTSP.2015.2505682
10.23919/EUSIPCO54536.2021.9616050
10.1007/BF02832325
10.1137/08072019X
10.1214/aos/1018031103
10.1109/JSTSP.2015.2496908
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
DOI 10.1007/s10957-022-02122-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 952
ExternalDocumentID oai:HAL:hal-03793623v1
10_1007_s10957_022_02122_y
GrantInformation_xml – fundername: European Research Council
  grantid: ERC-2019-STG-850925
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c353t-d9eba13941b03edadc5bd2aee68f5bb6016f8f7bdddc4a26d5b23b4b7b93bcdc3
IEDL.DBID 7WY
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878452800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Tue Oct 28 06:37:40 EDT 2025
Wed Nov 05 01:58:21 EST 2025
Sat Nov 29 06:02:32 EST 2025
Tue Nov 18 21:26:11 EST 2025
Fri Feb 21 02:44:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Subspace acceleration
Majorization-minimization
Stochastic optimization
Binary logistic regression
Image reconstruction
Convergence analysis
subspace acceleration
binary logistic regression
image reconstruction
convergence analysis
Majorization-Minimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-d9eba13941b03edadc5bd2aee68f5bb6016f8f7bdddc4a26d5b23b4b7b93bcdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3631-6093
OpenAccessLink https://hal.science/hal-03793623
PQID 2736489462
PQPubID 48247
PageCount 34
ParticipantIDs hal_primary_oai_HAL_hal_03793623v1
proquest_journals_2736489462
crossref_primary_10_1007_s10957_022_02122_y
crossref_citationtrail_10_1007_s10957_022_02122_y
springer_journals_10_1007_s10957_022_02122_y
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Chouzenoux, Jezierska, Pesquet, Talbot (CR23) 2013; 6
Huang, Chouzenoux, Elvira (CR43) 2021; 7
Bertsekas (CR6) 2016
CR39
Florescu, Chouzenoux, Pesquet, Ciuciu, Ciochina (CR37) 2014; 103
Duflo (CR31) 2013
CR36
Konečnỳ, Liu, Richtárik, Takáč (CR46) 2015; 10
CR35
CR34
Byrd, Hansen, Nocedal, Singer (CR16) 2016; 26
CR33
CR32
Chouzenoux, Pesquet (CR24) 2016; 23
CR30
CR74
CR72
CR70
Tieleman, Hinton (CR71) 2012; 4
Bolte, Pauwels (CR9) 2016; 41
Sonneveld (CR68) 1989; 10
Shi, Shen (CR67) 2007; 24
Zhang, Kwok, Yeung (CR73) 2007; 69
CR8
CR47
CR45
Allain, Idier, Goussard (CR3) 2006; 15
Atchadé, Fort, Moulines (CR4) 2017; 18
Bottou, Curtis, Nocedal (CR13) 2018; 60
CR42
CR41
Rosasco, Villa, Vu (CR64) 2020; 82
Sun, Babu, Palomar (CR69) 2016; 65
Briceño-Arias, Chierchia, Chouzenoux, Pesquet (CR15) 2019; 72
Pereyra, Schniter, Chouzenoux, Pesquet, Tourneret, Hero, McLaughlin (CR58) 2015; 10
Chang, Lin (CR21) 2011; 2
CR19
Combettes, Pesquet (CR26) 2016; 1
CR18
CR17
CR59
CR14
CR57
CR12
CR56
CR10
Geman, Yang (CR40) 1995; 4
CR54
Miele, Cantrell (CR53) 1969; 3
CR50
Liu, Nocedal (CR48) 1989; 45
Delyon, Lavielle, Moulines (CR27) 1999; 27
Chouzenoux, Pesquet (CR25) 2017; 65
Jacobson, Fessler (CR44) 2007; 16
Chouzenoux, Idier, Moussaoui (CR22) 2010; 20
Loizou, Richtárik (CR49) 2020; 77
Robini, Zhu (CR63) 2015; 8
Bertsekas, Tsitsiklis (CR7) 2000; 10
CR29
Marnissi, Chouzenoux, Benazza-Benyahia, Pesquet (CR51) 2020; 68
Sghaier, Chouzenoux, Pesquet, Muller (CR66) 2022; 77
CR28
Gadat (CR38) 2017
Bell, Xu, Zhang (CR5) 2016; 55
Akyildiz, Chouzenoux, Elvira, Míguez (CR2) 2019; 26
Absil, Gallivan (CR1) 2009; 47
CR65
CR20
Nesterov (CR55) 1983; 269
Meyer (CR52) 2006
CR62
CR61
CR60
Bordes, Bottou, Gallinari (CR11) 2009; 10
ÖD Akyildiz (2122_CR2) 2019; 26
A Florescu (2122_CR37) 2014; 103
D Geman (2122_CR40) 1995; 4
2122_CR36
2122_CR35
P-A Meyer (2122_CR52) 2006
2122_CR34
Z-J Shi (2122_CR67) 2007; 24
E Chouzenoux (2122_CR24) 2016; 23
2122_CR39
2122_CR72
Y Huang (2122_CR43) 2021; 7
2122_CR70
A Bordes (2122_CR11) 2009; 10
2122_CR33
DC Liu (2122_CR48) 1989; 45
E Chouzenoux (2122_CR23) 2013; 6
2122_CR32
MC Robini (2122_CR63) 2015; 8
2122_CR30
2122_CR74
A Miele (2122_CR53) 1969; 3
J Konečnỳ (2122_CR46) 2015; 10
MW Jacobson (2122_CR44) 2007; 16
Y Sun (2122_CR69) 2016; 65
P Sonneveld (2122_CR68) 1989; 10
YE Nesterov (2122_CR55) 1983; 269
2122_CR47
N Loizou (2122_CR49) 2020; 77
2122_CR45
C-C Chang (2122_CR21) 2011; 2
DP Bertsekas (2122_CR7) 2000; 10
2122_CR42
2122_CR41
L Bottou (2122_CR13) 2018; 60
M Duflo (2122_CR31) 2013
M Allain (2122_CR3) 2006; 15
T Bell (2122_CR5) 2016; 55
2122_CR59
2122_CR14
2122_CR57
2122_CR12
2122_CR56
2122_CR19
Y Marnissi (2122_CR51) 2020; 68
2122_CR18
2122_CR17
DP Bertsekas (2122_CR6) 2016
RH Byrd (2122_CR16) 2016; 26
2122_CR50
M Sghaier (2122_CR66) 2022; 77
YF Atchadé (2122_CR4) 2017; 18
2122_CR10
2122_CR54
M Pereyra (2122_CR58) 2015; 10
E Chouzenoux (2122_CR25) 2017; 65
B Delyon (2122_CR27) 1999; 27
LM Briceño-Arias (2122_CR15) 2019; 72
2122_CR8
L Rosasco (2122_CR64) 2020; 82
PL Combettes (2122_CR26) 2016; 1
2122_CR29
Z Zhang (2122_CR73) 2007; 69
2122_CR28
2122_CR62
2122_CR61
T Tieleman (2122_CR71) 2012; 4
2122_CR60
E Chouzenoux (2122_CR22) 2010; 20
2122_CR65
2122_CR20
J Bolte (2122_CR9) 2016; 41
P-A Absil (2122_CR1) 2009; 47
S Gadat (2122_CR38) 2017
References_xml – ident: CR45
– ident: CR70
– volume: 41
  start-page: 442
  issue: 2
  year: 2016
  end-page: 465
  ident: CR9
  article-title: Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs
  publication-title: Math. Oper. Res.
– volume: 77
  start-page: 653
  issue: 3
  year: 2020
  end-page: 710
  ident: CR49
  article-title: Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace descent methods
  publication-title: Comput. Optim. Appl.
– ident: CR74
– volume: 6
  start-page: 563
  issue: 1
  year: 2013
  end-page: 591
  ident: CR23
  article-title: A majorize-minimize subspace approach for image regularization
  publication-title: SIAM J. Imaging Sci.
– ident: CR39
– ident: CR12
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR61
– volume: 77
  year: 2022
  ident: CR66
  article-title: A novel task-based reconstruction approach for digital breast tomosynthesis
  publication-title: Med. Image Anal.
– ident: CR8
– volume: 20
  start-page: 1517
  issue: 6
  year: 2010
  end-page: 1528
  ident: CR22
  article-title: A majorize-minimize strategy for subspace optimization applied to image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 1257
  issue: 8
  year: 2019
  end-page: 1261
  ident: CR2
  article-title: A probabilistic incremental proximal gradient method
  publication-title: IEEE Signal Process. Lett.
– year: 2017
  ident: CR38
  publication-title: Stochastic optimization algorithms, non asymptotic and asymptotic behaviour
– ident: CR42
– volume: 23
  start-page: 1284
  issue: 9
  year: 2016
  end-page: 1288
  ident: CR24
  article-title: Convergence rate analysis of the majorize-minimize subspace algorithm
  publication-title: IEEE Signal Process. Lett.
– ident: CR19
– volume: 16
  start-page: 2411
  issue: 10
  year: 2007
  end-page: 2422
  ident: CR44
  article-title: An expanded theoretical treatment of iteration-dependent Majorize-Minimize algorithms
  publication-title: IEEE Trans. Image Process.
– ident: CR50
– volume: 10
  start-page: 242
  issue: 2
  year: 2015
  end-page: 255
  ident: CR46
  article-title: Mini-batch semi-stochastic gradient descent in the proximal setting
  publication-title: IEEE J. Sel. Top. Signal Process.
– ident: CR57
– ident: CR32
– volume: 68
  start-page: 2356
  year: 2020
  end-page: 2369
  ident: CR51
  article-title: Majorize-minimize adapted Metropolis–Hastings algorithm
  publication-title: IEEE Trans. Signal Process.
– ident: CR60
– ident: CR36
– volume: 55
  start-page: 2346
  issue: 9
  year: 2016
  end-page: 2352
  ident: CR5
  article-title: Method for out-of-focus camera calibration
  publication-title: Appl. Opt.
– year: 2013
  ident: CR31
  publication-title: Random iterative models
– volume: 47
  start-page: 997
  issue: 2
  year: 2009
  end-page: 1018
  ident: CR1
  article-title: Accelerated line-search and trust-region methods
  publication-title: SIAM J. Numer. Anal.
– volume: 72
  start-page: 707
  issue: 3
  year: 2019
  end-page: 726
  ident: CR15
  article-title: A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression
  publication-title: Comput. Optim. Appl.
– volume: 10
  start-page: 224
  issue: 2
  year: 2015
  end-page: 241
  ident: CR58
  article-title: A survey of stochastic simulation and optimization methods in signal processing
  publication-title: IEEE J. Sel. Top. Signal Process.
– ident: CR18
– volume: 103
  start-page: 285
  year: 2014
  end-page: 295
  ident: CR37
  article-title: A majorize-minimize memory gradient method for complex-valued inverse problems
  publication-title: Signal Process.
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  end-page: 27
  ident: CR21
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 65
  start-page: 4770
  issue: 18
  year: 2017
  end-page: 4783
  ident: CR25
  article-title: A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation
  publication-title: IEEE Trans. Signal Process.
– ident: CR47
– ident: CR72
– ident: CR14
– volume: 82
  start-page: 891
  year: 2020
  end-page: 917
  ident: CR64
  article-title: Convergence of stochastic proximal gradient algorithm
  publication-title: Appl. Math. Optim.
– ident: CR30
– ident: CR10
– ident: CR33
– volume: 4
  start-page: 932
  issue: 7
  year: 1995
  end-page: 946
  ident: CR40
  article-title: Nonlinear image recovery with half-quadratic regularization
  publication-title: IEEE Trans. Image Process.
– volume: 69
  start-page: 1
  year: 2007
  end-page: 33
  ident: CR73
  article-title: Surrogate maximization/minimization algorithms and extensions
  publication-title: Mach. Learn.
– volume: 26
  start-page: 1008
  issue: 2
  year: 2016
  end-page: 1031
  ident: CR16
  article-title: A stochastic quasi-Newton method for large-scale optimization
  publication-title: SIAM J. Optim.
– volume: 27
  start-page: 94
  issue: 1
  year: 1999
  end-page: 128
  ident: CR27
  article-title: Convergence of a stochastic approximation version of the EM algorithm
  publication-title: Ann. Stat.
– ident: CR56
– volume: 10
  start-page: 1737
  year: 2009
  end-page: 1754
  ident: CR11
  article-title: SGD-QN: careful quasi-Newton stochastic gradient descent
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  end-page: 528
  ident: CR48
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 3
  start-page: 459
  issue: 6
  year: 1969
  end-page: 470
  ident: CR53
  article-title: Study on a memory gradient method for the minimization of functions
  publication-title: J. Optim. Theory Appl.
– volume: 10
  start-page: 627
  issue: 3
  year: 2000
  end-page: 642
  ident: CR7
  article-title: Gradient convergence in gradient methods with errors
  publication-title: SIAM J. Optim.
– year: 2006
  ident: CR52
  publication-title: Martingales and stochastic integrals I
– volume: 10
  start-page: 36
  issue: 1
  year: 1989
  end-page: 52
  ident: CR68
  article-title: CGS: A fast Lanczos-type solver for nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– ident: CR65
– year: 2016
  ident: CR6
  publication-title: Nonlinear Programming
– ident: CR17
– volume: 7
  start-page: 531
  year: 2021
  end-page: 546
  ident: CR43
  article-title: Probabilistic modeling and inference for sequential space-varying blur identification
  publication-title: IEEE Trans. Comput. Imaging
– volume: 4
  start-page: 26
  issue: 2
  year: 2012
  end-page: 31
  ident: CR71
  article-title: RMSProp: divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA Neural Netw. Mach. Learn.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 33
  ident: CR4
  article-title: On perturbed proximal gradient algorithms
  publication-title: J. Mach. Learn. Res.
– ident: CR34
– volume: 24
  start-page: 367
  issue: 1
  year: 2007
  end-page: 376
  ident: CR67
  article-title: Convergence of supermemory gradient method
  publication-title: J. Appl. Math. Comput.
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  end-page: 311
  ident: CR13
  article-title: Optimization methods for large-scale machine learning
  publication-title: Siam Rev.
– volume: 8
  start-page: 1752
  issue: 3
  year: 2015
  end-page: 1797
  ident: CR63
  article-title: Generic half-quadratic optimization for image reconstruction
  publication-title: SIAM J. Imaging Sci.
– ident: CR59
– volume: 15
  start-page: 1130
  issue: 5
  year: 2006
  end-page: 1142
  ident: CR3
  article-title: On global and local convergence of half-quadratic algorithms
  publication-title: IEEE Trans. Image Process.
– volume: 1
  start-page: 13
  issue: 1
  year: 2016
  end-page: 37
  ident: CR26
  article-title: Stochastic approximations and perturbations in forward-backward splitting for monotone operators
  publication-title: Pure Appl. Funct. Anal.
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 269
  start-page: 543
  year: 1983
  end-page: 547
  ident: CR55
  article-title: A method for solving the convex programming problem with convergence rate
  publication-title: Dokl. akad. nauk Sssr
– volume: 65
  start-page: 794
  issue: 3
  year: 2016
  end-page: 816
  ident: CR69
  article-title: Majorization-minimization algorithms in signal processing, communications, and machine learning
  publication-title: IEEE Trans. Signal Process.
– ident: CR20
– ident: 2122_CR19
– ident: 2122_CR30
  doi: 10.23919/EUSIPCO.2017.8081215
– volume-title: Stochastic optimization algorithms, non asymptotic and asymptotic behaviour
  year: 2017
  ident: 2122_CR38
– ident: 2122_CR62
  doi: 10.1016/B978-0-12-604550-5.50015-8
– volume: 26
  start-page: 1257
  issue: 8
  year: 2019
  ident: 2122_CR2
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2926926
– volume: 6
  start-page: 563
  issue: 1
  year: 2013
  ident: 2122_CR23
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/11085997X
– volume: 23
  start-page: 1284
  issue: 9
  year: 2016
  ident: 2122_CR24
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2593589
– volume: 4
  start-page: 932
  issue: 7
  year: 1995
  ident: 2122_CR40
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.392335
– volume: 269
  start-page: 543
  year: 1983
  ident: 2122_CR55
  publication-title: Dokl. akad. nauk Sssr
– ident: 2122_CR54
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 2122_CR13
  publication-title: Siam Rev.
  doi: 10.1137/16M1080173
– volume-title: Nonlinear Programming
  year: 2016
  ident: 2122_CR6
– volume: 72
  start-page: 707
  issue: 3
  year: 2019
  ident: 2122_CR15
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00060-6
– ident: 2122_CR50
– volume: 65
  start-page: 794
  issue: 3
  year: 2016
  ident: 2122_CR69
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2601299
– ident: 2122_CR39
– ident: 2122_CR35
  doi: 10.1109/ICASSP.2015.7178361
– ident: 2122_CR41
  doi: 10.23919/EUSIPCO54536.2021.9616274
– ident: 2122_CR45
– ident: 2122_CR18
  doi: 10.1007/s00041-008-9045-x
– ident: 2122_CR32
  doi: 10.1109/TSP.2022.3172619
– ident: 2122_CR17
  doi: 10.1109/ICIP.2016.7532949
– ident: 2122_CR28
– volume: 65
  start-page: 4770
  issue: 18
  year: 2017
  ident: 2122_CR25
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2709265
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 2122_CR48
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 3
  start-page: 459
  issue: 6
  year: 1969
  ident: 2122_CR53
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00929359
– volume: 41
  start-page: 442
  issue: 2
  year: 2016
  ident: 2122_CR9
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2015.0735
– volume: 69
  start-page: 1
  year: 2007
  ident: 2122_CR73
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5022-x
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 2122_CR21
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 103
  start-page: 285
  year: 2014
  ident: 2122_CR37
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.09.026
– ident: 2122_CR59
  doi: 10.1109/ICASSP40776.2020.9053284
– volume: 82
  start-page: 891
  year: 2020
  ident: 2122_CR64
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-019-09617-7
– ident: 2122_CR34
– volume: 1
  start-page: 13
  issue: 1
  year: 2016
  ident: 2122_CR26
  publication-title: Pure Appl. Funct. Anal.
– volume: 7
  start-page: 531
  year: 2021
  ident: 2122_CR43
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2021.3081059
– ident: 2122_CR65
– volume: 77
  year: 2022
  ident: 2122_CR66
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102341
– volume: 10
  start-page: 627
  issue: 3
  year: 2000
  ident: 2122_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497331063
– volume: 68
  start-page: 2356
  year: 2020
  ident: 2122_CR51
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2983150
– ident: 2122_CR42
– ident: 2122_CR61
  doi: 10.1214/aoms/1177729586
– ident: 2122_CR56
– ident: 2122_CR8
– volume: 20
  start-page: 1517
  issue: 6
  year: 2010
  ident: 2122_CR22
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2103083
– ident: 2122_CR47
  doi: 10.1609/aaai.v30i1.10200
– ident: 2122_CR10
– ident: 2122_CR33
– ident: 2122_CR14
– volume: 16
  start-page: 2411
  issue: 10
  year: 2007
  ident: 2122_CR44
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.904387
– volume: 15
  start-page: 1130
  issue: 5
  year: 2006
  ident: 2122_CR3
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.864173
– ident: 2122_CR70
– volume: 8
  start-page: 1752
  issue: 3
  year: 2015
  ident: 2122_CR63
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/140987845
– ident: 2122_CR12
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 77
  start-page: 653
  issue: 3
  year: 2020
  ident: 2122_CR49
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00220-z
– volume: 10
  start-page: 36
  issue: 1
  year: 1989
  ident: 2122_CR68
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910004
– volume: 55
  start-page: 2346
  issue: 9
  year: 2016
  ident: 2122_CR5
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.002346
– ident: 2122_CR60
– volume: 4
  start-page: 26
  issue: 2
  year: 2012
  ident: 2122_CR71
  publication-title: COURSERA Neural Netw. Mach. Learn.
– ident: 2122_CR20
  doi: 10.1109/ICIP40778.2020.9190921
– ident: 2122_CR57
– ident: 2122_CR72
  doi: 10.1142/9789812709356_0012
– ident: 2122_CR29
– volume: 10
  start-page: 1737
  year: 2009
  ident: 2122_CR11
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 1008
  issue: 2
  year: 2016
  ident: 2122_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/140954362
– volume: 10
  start-page: 242
  issue: 2
  year: 2015
  ident: 2122_CR46
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2015.2505682
– ident: 2122_CR74
– volume-title: Random iterative models
  year: 2013
  ident: 2122_CR31
– ident: 2122_CR36
  doi: 10.23919/EUSIPCO54536.2021.9616050
– volume: 24
  start-page: 367
  issue: 1
  year: 2007
  ident: 2122_CR67
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/BF02832325
– volume: 47
  start-page: 997
  issue: 2
  year: 2009
  ident: 2122_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/08072019X
– volume: 27
  start-page: 94
  issue: 1
  year: 1999
  ident: 2122_CR27
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1018031103
– volume-title: Martingales and stochastic integrals I
  year: 2006
  ident: 2122_CR52
– volume: 10
  start-page: 224
  issue: 2
  year: 2015
  ident: 2122_CR58
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2015.2496908
– volume: 18
  start-page: 1
  year: 2017
  ident: 2122_CR4
  publication-title: J. Mach. Learn. Res.
SSID ssj0009874
Score 2.3957968
Snippet A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In...
A wide class of problems involves the minimization of a coercive and differentiable function F on RN whose gradient cannot be evaluated in an exact manner. In...
A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 919
SubjectTerms Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Convergence
Engineering
Engineering Sciences
Errors
Image processing
Machine learning
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Robustness (mathematics)
Signal and Image processing
Stochastic processes
Subspaces
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9EEf_BanU4r4poEuabvUt04cE9wQp7K30ny5yT5krYP99yZdu01RQR-TXD-4u1zuyN3vAM4pZlKHyQrpzSSQ9v8V8rknkRS-Tbjt2jxSabOJaqtFOx3_PisKi_Ns9_xKMrXUS8VuvltFJvvcwJJjNC3AqmvQZkyM3n5eQO3SHHsZI4KJn5XKfP-OT8dRoWuSIZc8zS-Xo-mZU9_6399uw2bmY1rBTCl2YEUOd2FjCXlQj5pzuNZ4D2rtoPZw2wqurMBqJyPejQx6s2WMig6ppdWMXkfjrGATNXvD3iAbWEH_Ra8k3cE-PNVvHq8bKGuugDhxSYKEL1mk3T-nwmwiRSS4ywSOpPSochkzKC2KqioTQnAnwp5wGSbMYVXmE8YFJwdQHI6G8hAsaqYwi5QniKOoJqwobjpZM8ypw3kJKjmPQ54hj5sGGP1wgZlsuBVqboUpt8JpCS7mz7zNcDd-pT7TopsTGsjsRnAXmjmbaAukfbxJpQTlXLJhtlHjUHtvnkN9x8MluMwluVj--ZNHfyM_hnVslCFNhClDMRm_yxNY45OkF49PUwX-AIsO6j4
  priority: 102
  providerName: Springer Nature
Title SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm
URI https://link.springer.com/article/10.1007/s10957-022-02122-y
https://www.proquest.com/docview/2736489462
https://hal.science/hal-03793623
Volume 195
WOSCitedRecordID wos000878452800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB714AEeoFwi9JCFeIMVzq6PNS_IqVq1goQo4Si8WN6rSdUmpXEr9d93xlknpRJ94WWkPey1PLszs9f3AbyVXFmcJjuGg8kwjP8dy3RimTVZKHQYh7p0NdlE2uvJo6Os7xfcZv5YZWMTa0NtpprWyD-gm00imUUJ_3T-hxFrFO2uegqNVVhHRx0Tg0H689cSdFc2KMycCS4yf2nGX53L4pRRCYGcc3b9l2NaHdGxyFsx551t0tr77D_53-_egMc-7gzyeUd5Cit28gwe3UIjxFR3AeE6ew6dYd4ZHPbyj0EeDKupHpWE6ByQocFptg265Qk2M7_EybrjyfjMJ4L89BhLqtHZC_i-v_dt94B5wgWmRSwqZjKrSgwJo7YKhTWl0bEyvLQ2kS5WipBbnHSpMsboqOSJiRUXKlKpyoTSRouXsDaZTuwrCCRlcVW6xIjISazYdprYrRXXMtK6Be3mbxfao5ETKcZpscRRJg0VqKGi1lBx3YJ3i2fO51gc99Z-g0pcVCQY7YP8S0F5oUCrhHHfVbsFW43WCj94Z8VSZS143-h9WfzvJl_f_7ZNeMipw9WHYbZgrbq4tNvwQF9V49nFTt11d2C9s9frDzD1OWUou-EuSf61ln2S6RBlP_6NcjD8cQPfpPwK
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61BYlygPJSUwqsEJzAYmPvw4tUVVugSpSHEC1Sb8bPJlWbhGZblD_Fb8Sz2U0KEr310KMf65XX34zH65lvAN5wqqw_JjvihckQb_87kunEEmuykOkwDrV0ZbKJtN_nR0fZ1xX4XcfCoFtlrRNLRW3GGv-Rf_DbbBLxLEro7uQnwaxReLtap9CYw6JjZ7_8kW260_7s1_ctpftfDj-1SJVVgGgWs4KYzCrp7Z6oqUJmjTQ6VoZKaxPuYqWQnsRxlypjjI4kTUysKFORSlXGlDaa-XFX4U7EeIIS1UnJkuSX16zPlDDKsipIpwrVy-KUYAuSqlMy-2sjXB2gG-YVG_efa9lyt9t_eNu-0wY8qOzqIJ8LwiNYsaPHcP8K26Iv9RYUtdMnsHeQ731r9_OPQR4cFGM9kMhYHaAinUhtg5488dOaB6mS3nA0PKsKQX567FuKwdlT-H4jU3oGa6PxyG5CwLGKKukSwyLHfcem05i9W1HNI60b0KxXV-iKbR2TfpyKJU80IkJ4RIgSEWLWgHeLZyZzrpFre7_2oFl0RJrwVt4VWBcyr3W9XXvZbMB2jRJRKaepWEKkAe9rnC2b___KretHewX3Woe9rui2-53nsE4R7KXjzzasFecX9gXc1ZfFcHr-shSbAH7cNP7-ABtLVgE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KULtgTciUMoKwQmsbux9eJEQ2rSNGrVZRS1Ivbl-NkFtkjZLUf4avw57400KEr31wNGP9crrz-OZ9cw3AO8oFtqayQbZzaSQ1f8NymSikVZZSGQYh5KbKtlEWhT05CTrr8CvOhbGuVXWMrES1Gos3T_ybXvMJhHNogRvG-8W0d_tfJlcIpdByt201uk05hA50LOf1nybfu7u2rV-j3Fn7-vOPvIZBpAkMSmRyrTgVgeKWiIkWnElY6Ew1zqhJhbCUZUYalKhlJIRx4mKBSYiEqnIiJBKEjvuKqylxBo9DVhr7xX9oyXlL605oDEimGQ-ZMcH7mVxilyLo1jHaPbHsbg6cE6ZNzTevy5pq7Ov8_B__mqP4IHXuIN8vkUew4oePYGNGzyMttRbkNdOn0L7OG8fdYv8U5AHx-VYDrjjsg6ciJ1wqYMe_26nNQ9fRb3haHjhC0F-fmZbysHFM_h2J1N6Do3ReKRfQEBdFRbcJIpEhtqOLSNdXm-BJY2kbEKrXmkmPQ-7SwdyzpYM0g4dzKKDVehgsyZ8WDwzmbOQ3Nr7rQXQoqMjEN_PD5mrC4mVx1bjvW41YbNGDPNia8qWcGnCxxpzy-Z_v_Ll7aO9gfsWduywWxy8gnXscF95BG1Co7z6oV_DPXldDqdXW34PBXB61wD8DZXbYFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SABRINA%3A+A+Stochastic+Subspace+Majorization-Minimization+Algorithm&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Chouzenoux%2C+Emilie&rft.au=Fest%2C+Jean-Baptiste&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=195&rft.issue=3&rft.spage=919&rft.epage=952&rft_id=info:doi/10.1007%2Fs10957-022-02122-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon