SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm
A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustne...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 195; číslo 3; s. 919 - 952 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2022
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A wide class of problems involves the minimization of a coercive and differentiable function
F
on
R
N
whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm
SABRINA
that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by
SABRINA
. Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of
SABRINA
with respect to state-of-the-art gradient-based stochastic optimization methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-022-02122-y |