SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm

A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 195; číslo 3; s. 919 - 952
Hlavní autoři: Chouzenoux, Emilie, Fest, Jean-Baptiste
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2022
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A wide class of problems involves the minimization of a coercive and differentiable function F on R N whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work is dedicated to investigating the convergence of Majorization-Minimization (MM) schemes when stochastic errors affect the gradient terms. We introduce a general stochastic optimization framework, called StochAstic suBspace majoRIzation-miNimization Algorithm SABRINA that encompasses MM quadratic schemes possibly enhanced with a subspace acceleration strategy. New asymptotical results are built for the stochastic process generated by SABRINA . Two sets of numerical experiments in the field of machine learning and image processing are presented to support our theoretical results and illustrate the good performance of SABRINA with respect to state-of-the-art gradient-based stochastic optimization methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-022-02122-y