On the Complexity of the Plantinga–Vegter Algorithm

We introduce tools from numerical analysis and high dimensional probability for precision control and complexity analysis of subdivision-based algorithms in computational geometry. We combine these tools with the continuous amortization framework from exact computation. We use these tools on a well-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete & computational geometry Ročník 68; číslo 3; s. 664 - 708
Hlavní autori: Cucker, Felipe, Ergür, Alperen A., Tonelli-Cueto, Josué
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2022
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0179-5376, 1432-0444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We introduce tools from numerical analysis and high dimensional probability for precision control and complexity analysis of subdivision-based algorithms in computational geometry. We combine these tools with the continuous amortization framework from exact computation. We use these tools on a well-known example from the subdivision family: the adaptive subdivision algorithm due to Plantinga and Vegter. The only existing complexity estimate on this rather fast algorithm was an exponential worst-case upper bound for its interval arithmetic version. We go beyond the worst-case by considering both average and smoothed analysis, and prove polynomial time complexity estimates for both interval arithmetic and finite-precision versions of the Plantinga–Vegter algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-022-00403-x