An Eigenvalue Perturbation Approach to Stability Analysis, Part I: Eigenvalue Series of Matrix Operators

This two-part paper is concerned with stability analysis of linear systems subject to parameter variations, of which linear time-invariant delay systems are of particular interest. We seek to characterize the asymptotic behavior of the characteristic zeros of such systems. This behavior determines,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on control and optimization Ročník 48; číslo 8; s. 5564 - 5582
Hlavní autoři: Chen, Jie, Fu, Peilin, Niculescu, Silviu-Iulian, Guan, Zhihong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2010
Témata:
ISSN:0363-0129, 1095-7138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This two-part paper is concerned with stability analysis of linear systems subject to parameter variations, of which linear time-invariant delay systems are of particular interest. We seek to characterize the asymptotic behavior of the characteristic zeros of such systems. This behavior determines, for example, whether the imaginary zeros cross from one half plane into another, and hence plays a critical role in determining the stability of a system. In Part I of the paper we develop necessary mathematical tools for this study, which focuses on the eigenvalue series of holomorphic matrix operators. While of independent interest, the eigenvalue perturbation analysis has a particular bearing on stability analysis and, indeed, has the promise to provide efficient computational solutions to a class of problems relevant to control systems analysis and design, of which time-delay systems are a notable example. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0363-0129
1095-7138
DOI:10.1137/080741707