Mixed finite elements applied to acoustic wave problems in compressible viscous fluids under piezoelectric actuation

In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in this setting, among which are the necessity of correct interface coupling, near incompressi...

Full description

Saved in:
Bibliographic Details
Published in:Acta mechanica Vol. 233; no. 5; pp. 1967 - 1986
Main Authors: Meindlhumer, Martin, Pechstein, Astrid, Jakoby, Bernhard
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.05.2022
Springer
Springer Nature B.V
Subjects:
ISSN:0001-5970, 1619-6937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in this setting, among which are the necessity of correct interface coupling, near incompressibility of the fluid, adverse geometric dimensions of flat piezoelectric transducers and different length scales of shear and pressure wave. Assuming small deformations and velocities, we present a mixed variational formulation with consistent interface coupling conditions in (mechanic) frequency domain. Both fluid and piezoelectric solid domain are discretized using Tangential-Displacement Normal-Normal-Stress elements. These elements model not only the deformation, but add an independent tensor-valued stress approximation. The method has been rigorously proven to be free from shear locking for flat prismatic or hexahedral elements. Thus, modeling of the flat geometry of piezoelectric resonators as well as resolution of the fastly decaying shear wave are facilitated. To circumvent the problem of volume locking due to the near incompressibility of the fluid, an additional independent pressure field is introduced. We present computational results indicating the capability of the method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-022-03195-6