Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings

We present sufficient conditions on the existence of solutions, with various specific almost periodicity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential equations, and their whole line analogues, , , with a family of ω-dissipative operators i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis Jg. 8; H. 1; S. 1 - 28
1. Verfasser: Kreulich, Josef
Format: Journal Article
Sprache:Englisch
Veröffentlicht: De Gruyter 01.01.2019
Schlagworte:
ISSN:2191-9496, 2191-950X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present sufficient conditions on the existence of solutions, with various specific almost periodicity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential equations, and their whole line analogues, , , with a family of ω-dissipative operators in a general Banach space . According to the classical DeLeeuw–Glicksberg theory, functions of various generalized almost periodic types uniquely decompose in a “dominating” and a “damping” part. The second main object of the study – in the above context – is to determine the corresponding “dominating” part of the operators , and the corresponding “dominating” differential equation,
ISSN:2191-9496
2191-950X
DOI:10.1515/anona-2016-0075