Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration
Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolut...
Saved in:
| Published in: | Pathology, research and practice Vol. 263; p. 155602 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Elsevier GmbH
01.11.2024
|
| Subjects: | |
| ISSN: | 0344-0338, 1618-0631, 1618-0631 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes.
The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment.
Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes.
The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease |
|---|---|
| AbstractList | Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes.
The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment.
Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes.
The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes.PURPOSEPancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes.The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment.METHODSThe search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment.Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes.RESULTSOur results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes.The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease.CONCLUSIONSThe application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease. Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes. The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment. Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes. The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease. |
| ArticleNumber | 155602 |
| Author | Khojasteh-Leylakoohi, Fatemeh Rajabloo, Yasamin Nazari, Elham Garjan, Hassan Shokri Khalili-Tanha, Ghazaleh Rouzbahani, Arian Karimi Avan, Amir |
| Author_xml | – sequence: 1 givenname: Arian Karimi surname: Rouzbahani fullname: Rouzbahani, Arian Karimi organization: Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran – sequence: 2 givenname: Ghazaleh surname: Khalili-Tanha fullname: Khalili-Tanha, Ghazaleh organization: Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran – sequence: 3 givenname: Yasamin surname: Rajabloo fullname: Rajabloo, Yasamin organization: Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran – sequence: 4 givenname: Fatemeh surname: Khojasteh-Leylakoohi fullname: Khojasteh-Leylakoohi, Fatemeh organization: Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran – sequence: 5 givenname: Hassan Shokri surname: Garjan fullname: Garjan, Hassan Shokri organization: Department of Health Information Technology, School of Management University of Medical Sciences, Tabriz, Iran – sequence: 6 givenname: Elham surname: Nazari fullname: Nazari, Elham email: Elham.Nazari@sbmu.ac.ir organization: Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 7 givenname: Amir surname: Avan fullname: Avan, Amir email: avana@mums.ac.ir organization: Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39357184$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1v1DAQxS1URLeFP4AL8pFLFn8kzkacUEULUhEXOFv-mGxnSexgO5WQ-OPxdtsLh55mRnq_J817F-QsxACEvOVsyxlXHw7bJS1bwUS75V2nmHhBNlzxXcOU5Gdkw2TbNkzK3Tm5yPnAGOtZy1-RcznIrue7dkP-fjPuDgPQCUwKGPbUTPuYsNzNmZrgqcU4m_QLUqboIRQc0ZmCMdAxJrqY4BLU21FXV0jUo9mHmDHTNR_t5nUq2MQZXabeFEMxFNinB4vX5OVopgxvHucl-Xn9-cfVl-b2-83Xq0-3jZOdLE0vmPVeGjEYBZa1LR8EU2Z0HWfD6AGsVU4wZ5lzQkLHBtXb3kJrxE5Bp-QleX_yXVL8vUIuesbsYJpMgLhmLTkXnVA1qCp99yhd7QxeLwnr-3_0U2JV0J8ELsWcE4zaYXn4piSDk-ZMH7vRh4ou-tiNPnVTSf4f-WT-HPPxxECN5x4h6ewQatAeE7iifcRn6H-mlqmG |
| CitedBy_id | crossref_primary_10_4239_wjd_v16_i7_106218 crossref_primary_10_1038_s41598_025_91007_x crossref_primary_10_1016_j_csbj_2025_09_028 |
| Cites_doi | 10.1126/scitranslmed.aav4772 10.1038/ajg.2016.482 10.1002/prca.201900048 10.1109/72.870050 10.3390/cancers11122007 10.3390/cancers12061534 10.1158/1078-0432.CCR-20-0235 10.1016/j.celrep.2021.109873 10.3390/ijms22031007 10.7150/jca.50716 10.2217/bmm-2018-0273 10.3390/diagnostics13193091 10.1038/s41416-019-0694-0 10.1002/ijc.33240 10.3390/cancers13112654 10.3390/cancers11020155 10.1158/1078-0432.CCR-19-1247 10.1016/j.jpi.2023.100298 10.3390/cancers13225611 10.3390/digital2040027 10.1177/1010428317707882 10.1158/0008-5472.CAN-17-3703 10.14740/wjon1166 10.1371/journal.pone.0257084 10.1016/j.jamcollsurg.2019.02.040 10.1186/s40537-014-0007-7 10.1007/s10994-019-05855-6 10.1002/1878-0261.13176 10.3390/genes10100778 10.1016/j.psep.2019.01.013 10.1038/s41575-021-00457-x 10.1007/s12079-023-00779-2 10.1016/S0140-6736(20)30974-0 10.1097/MD.0000000000022261 10.20544/HORIZONS.B.04.1.17.P05 10.3389/fonc.2023.1244578 10.1093/jlb/lsaa002 10.3233/CBM-210301 10.3389/fgene.2020.572284 10.1038/s41598-020-58290-2 10.1097/SLA.0000000000004066 10.3389/fphar.2020.00534 10.18632/oncotarget.22601 10.1371/journal.pone.0251876 10.2147/CLEP.S66677 10.1186/s13036-023-00340-0 10.18632/oncotarget.12406 10.1016/j.molonc.2016.07.001 10.1158/1078-0432.CCR-19-3313 10.55730/1300-0632.3974 10.1186/1471-2288-14-45 10.1038/s41416-020-0997-1 10.1136/bmjopen-2019-034568 10.3390/ijms24097781 10.1073/pnas.1616440113 10.18632/oncotarget.9491 10.51594/csitrj.v5i4.1048 10.14701/ahbps.BP-BEST-OP-2 10.1016/j.surg.2010.03.023 10.3390/s21144802 10.1126/sciadv.abh2724 10.1109/ACCESS.2019.2912200 10.1016/j.pan.2020.07.399 10.1136/gutjnl-2021-324755 10.1007/s11596-021-2356-8 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier GmbH Copyright © 2024 Elsevier GmbH. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier GmbH – notice: Copyright © 2024 Elsevier GmbH. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.prp.2024.155602 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1618-0631 |
| ExternalDocumentID | 39357184 10_1016_j_prp_2024_155602 S0344033824005132 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 123 1B1 1~. 1~5 29O 3O- 3V. 4.4 457 4CK 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 88I 8AF 8FE 8FH 8FI 8FJ 8G5 8P~ 8R4 8R5 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AAKPP AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABBQC ABFNM ABGSF ABLJU ABMAC ABMZM ABUDA ABUWG ABXDB ACDAQ ACGFO ACGFS ACGOD ACPRK ACRLP ADBBV ADEZE ADKUU ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFJKZ AFKRA AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHMBA AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKOJK BLC BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DU5 DWQXO EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IHE J1W K-O KOM L7B LK8 M1P M2O M2P M2Q M41 M7P MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PADUT PC. PEA PQQKQ PRG PROAC PSQYO Q2X Q38 R2- RIG ROL RPZ S0X SDF SDG SES SEW SJFOW SSH SSU SSZ T5I T5J T5K UDS UKHRP X7M YCJ ZGI ZXP ~G- 9DU AATTM AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFFHD AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU CITATION EFKBS EFLBG PHGZM PHGZT PJZUB PPXIY PQGLB ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c353t-720bdd3a29a6eb04419206afc5109fdeebb6c20cb0cc23e50967b7be4a286e563 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001330228500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0344-0338 1618-0631 |
| IngestDate | Sun Sep 28 02:50:40 EDT 2025 Thu Apr 03 07:01:50 EDT 2025 Sat Nov 29 03:31:09 EST 2025 Tue Nov 18 22:42:22 EST 2025 Sat Nov 23 15:55:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biomarkers Prognosis Diagnosis Pancreatic cancer Machine learning |
| Language | English |
| License | Copyright © 2024 Elsevier GmbH. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c353t-720bdd3a29a6eb04419206afc5109fdeebb6c20cb0cc23e50967b7be4a286e563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 39357184 |
| PQID | 3112526338 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3112526338 pubmed_primary_39357184 crossref_citationtrail_10_1016_j_prp_2024_155602 crossref_primary_10_1016_j_prp_2024_155602 elsevier_sciencedirect_doi_10_1016_j_prp_2024_155602 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Pathology, research and practice |
| PublicationTitleAlternate | Pathol Res Pract |
| PublicationYear | 2024 |
| Publisher | Elsevier GmbH |
| Publisher_xml | – name: Elsevier GmbH |
| References | Zhang, Wang, Zulfiqar, Lv, Dao, Lin (bib55) 2020; 8 Wang, Yao, Gong, Lu, Pang, Li (bib79) 2021; 7 Tokheim, Papadopoulos, Kinzler, Vogelstein, Karchin (bib35) 2016; 113 Kang, Chowdhry, Pugh, Park (bib39) 2023 Alizadeh Savareh, Asadzadeh Aghdaie, Behmanesh, Bashiri, Sadeghi, Zali (bib7) 2020; 20 Fan (bib69) 2020 Bagheri, Akbari, Mirbagheri (bib9) 2019; 123 Roth, Bose, Alhamdani, Mustafa, Tjaden, Zamzow (bib28) 2021; 273 Yang, LaRiviere, Ko, Till, Christensen, Yee (bib72) 2020; 26 Schelter, Biessmann, Januschowski, Salinas, Seufert, Szarvas (bib33) 2015 Schperberg, Boichard, Tsigelny, Richard, Kurzrock (bib38) 2020; 147 Mizrahi, Surana, Valle, Shroff (bib1) 2020; 395 Javaid, Haleem, Singh, Suman, Rab (bib8) 2022; 3 Yao, Wang, Jia, Zhao (bib70) 2017; 39 Yusuf, Atal, Li, Smith, Ravaud, Fergie (bib40) 2020; 10 Iwatate, Hoshino, Yokota, Ishige, Itami, Mori (bib52) 2020; 123 Kartal, Schmidt, Molina-Montes, Rodríguez-Perales, Wirbel, Maistrenko (bib5) 2022; 71 Lo, Mertz, Loeb (bib20) 2014; 14 Resmini, Silva, Araujo, Medeiros, Muchaluat-Saade, Conci (bib23) 2021; 21 Udegbe, Ebulue, Ebulue, Ekesiobi (bib36) 2024; 5 Margulis, Pladevall, Riera-Guardia, Varas-Lorenzo, Hazell, Berkman (bib19) 2014 Springer, Masica, Dal Molin, Douville, Thoburn, Afsari (bib60) 2019; 11 Mikdadi, O’Connell, Meacham, Dugan, Ojiere, Carlson (bib42) 2022; 33 Lee, Yoon, Lee, Han, Byun, Kang (bib58) 2021 Malhotra, Rachet, Bonaventure, Pereira, Woods (bib64) 2021; 16 Pahari, Basak, Sarkar (bib47) 2021; 43 Ko, Bhagwat, Black, Yee, Na, Fisher (bib71) 2018; 78 Van Engelen, Hoos (bib16) 2020; 109 Khatri, Bhasin (bib56) 2020; 11 Qin, Zhao, Guo, Zhu, Zhang, Min (bib78) 2021; 12 Long, Jung, Anh, Yan, Nghi, Park (bib6) 2019; 11 Kwon, Kim, Lee, Namkung, Yun, Yi (bib50) 2015; 16 Duan, Hu, Fan, Xiong, Han, Wang (bib45) 2019; 13 Nasteski (bib11) 2017; 4 Liu, Liu, Pan, Li, Yang, Li (bib68) 2019; 10 Dietterich (bib13) 2002; 2 Acer, Bulucu, Içer, Latifoğlu (bib29) 2023; 31 Huang, Soupir, Schlick, Teng, Sahin, Permuth (bib66) 2021; 13 Wang, Liu, Ma, Tan, Du, Lv (bib53) 2019; 13 Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib21) 2015; 2 Gerdtsson, Wingren, Persson, Delfani, Nordström, Ren (bib46) 2016; 10 Kaur, Smith, Patel, Menning, Watley, Malik (bib4) 2017; 112 Majumder, Taylor, Foote, Berger, Wu, Mahoney (bib62) 2021; 27 Celebi, Aydin (bib14) 2016 Minssen, Gerke, Aboy, Price, Cohen (bib37) 2020; 7 Ibrahim, Op de Beeck, Fransen, Peeters, Van Camp (bib65) 2022 Isaev, Jiang, Wu, Lee, Watters, Fort (bib80) 2021; 37 Gupta, Chiang, Sahoo, Mohapatra, You, Onthoni (bib25) 2019; 11 Khalili-Tanha, Mohit, Asadnia, Khazaei, Dashtiahangar, Maftooh (bib26) 2023; 17 Deng, Wang, Liu (bib59) 2020; 99 Shevade, Keerthi, Bhattacharyya, Murthy (bib22) 2000; 11 Lee, Lee, Park, Kim, Kim, Jung (bib57) 2021; 22 Al-Fatlawi, Malekian, García, Henschel, Kim, Dahl (bib77) 2021; 13 Ye, Li, Wang, Wu, Yi, Shi (bib67) 2021; 12 Peng, Pan, Yan, Brand, Petersen, Chari (bib54) 2020; 12 Maker, Hu, Kadkol, Hong, Brugge, Winter (bib61) 2019; 228 Yuan, Tang, Xie, Wang, Chen, Qi (bib63) 2016; 7 Hansmann, Klauschen, Samek, Müller, Donnadieu, Scharf (bib43) 2023; 14 Oh, Hessel, Czarnecki, Xu, van Hasselt, Singh (bib15) 2020; 33 Yan, Liu, Wang, Han, Wang, Liu (bib75) 2020; 11 Blyuss, Zaikin, Cherepanova, Munblit, Kiseleva, Prytomanova (bib18) 2020; 122 Lv, Wang, Tan, Du, Liu, Wang (bib48) 2017 Cao, Liu, Xu, You, Wang, Lou (bib73) 2016; 7 Hsieh, Lu, Lee, Chiu, Hsu, Li (bib17) 2011; 149 Kumar P.V., Ganguly T., Gupta R., Pokkuluri K.S., Mishra A.K.V., Selvi V. ML and AI Based Healthcare Model to more Interpretable and Transparent in Medical Diagnosis. Gress, Lausser, Schirra, Ortmüller, Diels, Kong (bib51) 2017; 8 Kafita, Nkhoma, Zulu, Sinkala (bib76) 2021; 16 Mahesh (bib10) 2020; 9 Rawla, Sunkara, Gaduputi (bib2) 2019; 10 Karar, El-Fishawy, Radad (bib30) 2023; 17 Sinkala, Mulder, Martin (bib27) 2020; 10 Shrestha, Mahmood (bib12) 2019; 7 Al-Tashi, Saad, Muneer, Qureshi, Mirjalili, Sheshadri (bib44) 2023; 24 Iwatate, Hoshino, Yokota, Ishige, Itami, Mori (bib74) 2020; 123 Zhang, Wu, Gong, Ye, Zhao, Li (bib24) 2021; 41 Abu-Khudir, Hafsa, Badr (bib32) 2023; 13 Klein (bib3) 2021; 18 Ul Hassan, Ali, Ul Abideen, Khan, Kouatly (bib34) 2022; 2 Yokoyama, Hamada, Higashi, Matsuo, Maemura, Kurahara (bib49) 2020; 26 Chi, Chen, Wang, Zhang, Jiang, Zhang (bib31) 2023; 13 Ibrahim (10.1016/j.prp.2024.155602_bib65) 2022 Gerdtsson (10.1016/j.prp.2024.155602_bib46) 2016; 10 Javaid (10.1016/j.prp.2024.155602_bib8) 2022; 3 Fan (10.1016/j.prp.2024.155602_bib69) 2020 Wang (10.1016/j.prp.2024.155602_bib79) 2021; 7 Celebi (10.1016/j.prp.2024.155602_bib14) 2016 Yokoyama (10.1016/j.prp.2024.155602_bib49) 2020; 26 Springer (10.1016/j.prp.2024.155602_bib60) 2019; 11 Kaur (10.1016/j.prp.2024.155602_bib4) 2017; 112 Khatri (10.1016/j.prp.2024.155602_bib56) 2020; 11 Dietterich (10.1016/j.prp.2024.155602_bib13) 2002; 2 Gress (10.1016/j.prp.2024.155602_bib51) 2017; 8 Lee (10.1016/j.prp.2024.155602_bib57) 2021; 22 Qin (10.1016/j.prp.2024.155602_bib78) 2021; 12 Yuan (10.1016/j.prp.2024.155602_bib63) 2016; 7 Sinkala (10.1016/j.prp.2024.155602_bib27) 2020; 10 Cao (10.1016/j.prp.2024.155602_bib73) 2016; 7 Shevade (10.1016/j.prp.2024.155602_bib22) 2000; 11 Rawla (10.1016/j.prp.2024.155602_bib2) 2019; 10 Van Engelen (10.1016/j.prp.2024.155602_bib16) 2020; 109 Zhang (10.1016/j.prp.2024.155602_bib55) 2020; 8 Huang (10.1016/j.prp.2024.155602_bib66) 2021; 13 Tokheim (10.1016/j.prp.2024.155602_bib35) 2016; 113 Abu-Khudir (10.1016/j.prp.2024.155602_bib32) 2023; 13 Shrestha (10.1016/j.prp.2024.155602_bib12) 2019; 7 Blyuss (10.1016/j.prp.2024.155602_bib18) 2020; 122 Acer (10.1016/j.prp.2024.155602_bib29) 2023; 31 Iwatate (10.1016/j.prp.2024.155602_bib74) 2020; 123 Ul Hassan (10.1016/j.prp.2024.155602_bib34) 2022; 2 Malhotra (10.1016/j.prp.2024.155602_bib64) 2021; 16 Al-Tashi (10.1016/j.prp.2024.155602_bib44) 2023; 24 Pahari (10.1016/j.prp.2024.155602_bib47) 2021; 43 Maker (10.1016/j.prp.2024.155602_bib61) 2019; 228 Ye (10.1016/j.prp.2024.155602_bib67) 2021; 12 Mizrahi (10.1016/j.prp.2024.155602_bib1) 2020; 395 Alizadeh Savareh (10.1016/j.prp.2024.155602_bib7) 2020; 20 Isaev (10.1016/j.prp.2024.155602_bib80) 2021; 37 Long (10.1016/j.prp.2024.155602_bib6) 2019; 11 Kang (10.1016/j.prp.2024.155602_bib39) 2023 Al-Fatlawi (10.1016/j.prp.2024.155602_bib77) 2021; 13 Karar (10.1016/j.prp.2024.155602_bib30) 2023; 17 Duan (10.1016/j.prp.2024.155602_bib45) 2019; 13 Lee (10.1016/j.prp.2024.155602_bib58) 2021 Gupta (10.1016/j.prp.2024.155602_bib25) 2019; 11 Yusuf (10.1016/j.prp.2024.155602_bib40) 2020; 10 Wang (10.1016/j.prp.2024.155602_bib53) 2019; 13 Nasteski (10.1016/j.prp.2024.155602_bib11) 2017; 4 Minssen (10.1016/j.prp.2024.155602_bib37) 2020; 7 Kafita (10.1016/j.prp.2024.155602_bib76) 2021; 16 Lo (10.1016/j.prp.2024.155602_bib20) 2014; 14 Mahesh (10.1016/j.prp.2024.155602_bib10) 2020; 9 Liu (10.1016/j.prp.2024.155602_bib68) 2019; 10 Yang (10.1016/j.prp.2024.155602_bib72) 2020; 26 Kartal (10.1016/j.prp.2024.155602_bib5) 2022; 71 Margulis (10.1016/j.prp.2024.155602_bib19) 2014 Udegbe (10.1016/j.prp.2024.155602_bib36) 2024; 5 Resmini (10.1016/j.prp.2024.155602_bib23) 2021; 21 Klein (10.1016/j.prp.2024.155602_bib3) 2021; 18 Roth (10.1016/j.prp.2024.155602_bib28) 2021; 273 Mikdadi (10.1016/j.prp.2024.155602_bib42) 2022; 33 Lv (10.1016/j.prp.2024.155602_bib48) 2017 Zhang (10.1016/j.prp.2024.155602_bib24) 2021; 41 Chi (10.1016/j.prp.2024.155602_bib31) 2023; 13 Khalili-Tanha (10.1016/j.prp.2024.155602_bib26) 2023; 17 Ko (10.1016/j.prp.2024.155602_bib71) 2018; 78 Bagheri (10.1016/j.prp.2024.155602_bib9) 2019; 123 Hansmann (10.1016/j.prp.2024.155602_bib43) 2023; 14 Yan (10.1016/j.prp.2024.155602_bib75) 2020; 11 Hsieh (10.1016/j.prp.2024.155602_bib17) 2011; 149 Oh (10.1016/j.prp.2024.155602_bib15) 2020; 33 Schelter (10.1016/j.prp.2024.155602_bib33) 2015 Deng (10.1016/j.prp.2024.155602_bib59) 2020; 99 Schperberg (10.1016/j.prp.2024.155602_bib38) 2020; 147 Najafabadi (10.1016/j.prp.2024.155602_bib21) 2015; 2 Majumder (10.1016/j.prp.2024.155602_bib62) 2021; 27 10.1016/j.prp.2024.155602_bib41 Peng (10.1016/j.prp.2024.155602_bib54) 2020; 12 Yao (10.1016/j.prp.2024.155602_bib70) 2017; 39 Iwatate (10.1016/j.prp.2024.155602_bib52) 2020; 123 Kwon (10.1016/j.prp.2024.155602_bib50) 2015; 16 |
| References_xml | – volume: 10 year: 2020 ident: bib40 article-title: Reporting quality of studies using machine learning models for medical diagnosis: a systematic review publication-title: BMJ Open – volume: 273 start-page: e273 year: 2021 end-page: e275 ident: bib28 article-title: Noninvasive discrimination of low and high-risk pancreatic intraductal papillary mucinous neoplasms publication-title: Ann. Surg. – volume: 18 start-page: 493 year: 2021 end-page: 502 ident: bib3 article-title: Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 7 start-page: 80033 year: 2016 ident: bib63 article-title: New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer publication-title: Oncotarget – volume: 122 start-page: 692 year: 2020 end-page: 696 ident: bib18 article-title: Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients publication-title: Br. J. Cancer – volume: 24 start-page: 7781 year: 2023 ident: bib44 article-title: Machine learning models for the identification of prognostic and predictive cancer biomarkers: a systematic review publication-title: Int. J. Mol. Sci. – volume: 13 year: 2019 ident: bib45 article-title: RNA-binding motif protein 6 is a candidate serum biomarker for pancreatic cancer publication-title: Proteom. Clin. Appl. – volume: 147 start-page: 2537 year: 2020 end-page: 2549 ident: bib38 article-title: Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials publication-title: Int. J. Cancer – volume: 11 year: 2020 ident: bib56 article-title: A transcriptomics-based meta-analysis combined with machine learning identifies a secretory biomarker panel for diagnosis of pancreatic adenocarcinoma publication-title: Front. Genet. – volume: 41 start-page: 368 year: 2021 end-page: 374 ident: bib24 article-title: Distinguishing rectal cancer from colon cancer based on the support vector machine method and RNA-sequencing data publication-title: Curr. Med. Sci. – volume: 12 start-page: 1534 year: 2020 ident: bib54 article-title: Systemic proteome alterations linked to early stage pancreatic cancer in diabetic patients publication-title: Cancers – volume: 26 start-page: 3248 year: 2020 end-page: 3258 ident: bib72 article-title: A multianalyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma publication-title: Clin. Cancer Res – volume: 10 start-page: 1305 year: 2016 end-page: 1316 ident: bib46 article-title: Plasma protein profiling in a stage defined pancreatic cancer cohort–implications for early diagnosis publication-title: Mol. Oncol. – start-page: 359 year: 2014 end-page: 368 ident: bib19 article-title: Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: the Newcastle–Ottawa scale and the RTI item bank publication-title: Clin. Epidemiol. – year: 2021 ident: bib58 article-title: Multi-biomarker panel prediction model for diagnosis of pancreatic cancer publication-title: J. Hepato-Biliary-Pancreat. Sci. – volume: 7 year: 2021 ident: bib79 article-title: Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics publication-title: Sci. Adv. – volume: 123 start-page: 1253 year: 2020 end-page: 1261 ident: bib74 article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer publication-title: Br. J. Cancer – volume: 12 start-page: 1445 year: 2021 end-page: 1454 ident: bib78 article-title: Detection of Pancreatic Ductal Adenocarcinoma by A qPCR-based Normalizer-free Circulating Extracellular Vesicles RNA Signature publication-title: J. Cancer – volume: 26 start-page: 2411 year: 2020 end-page: 2421 ident: bib49 article-title: Predicted prognosis of patients with pancreatic cancer by machine learning publication-title: Clin. Cancer Res. – volume: 11 start-page: 1188 year: 2000 end-page: 1193 ident: bib22 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Trans. Neural Netw. – year: 2020 ident: bib69 publication-title: Use Evidential Reason. Model Biomark. Pancreat. Cancer Predict. – volume: 43 start-page: 851 year: 2021 end-page: 857 ident: bib47 article-title: Ensemble based biomarker identification on pancreatic ductal adenocarcinoma gene expressions publication-title: Int. J. Comput. Appl. – volume: 13 start-page: 105 year: 2019 end-page: 121 ident: bib53 article-title: Pancreatic cancer biomarker detection by two support vector strategies for recursive feature elimination publication-title: Biomark. Med. – year: 2016 ident: bib14 article-title: Unsupervised Learning Algorithms – volume: 17 start-page: 1469 year: 2023 end-page: 1485 ident: bib26 article-title: Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis publication-title: J. Cell Commun. Signal. – volume: 16 year: 2021 ident: bib64 article-title: Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data publication-title: PloS One – volume: 8 year: 2020 ident: bib55 article-title: Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method publication-title: Front. Cell Dev. Biol. – year: 2015 ident: bib33 publication-title: Chall. Mach. Learn. Model Manag. – volume: 113 start-page: 14330 year: 2016 end-page: 14335 ident: bib35 article-title: Evaluating the evaluation of cancer driver genes publication-title: Proc. Natl. Acad. Sci. – volume: 149 start-page: 87 year: 2011 end-page: 93 ident: bib17 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery – volume: 78 start-page: 3688 year: 2018 end-page: 3697 ident: bib71 article-title: miRNA profiling of magnetic nanopore–isolated extracellular vesicles for the diagnosis of pancreatic cancer publication-title: Cancer Res. – volume: 22 start-page: 1007 year: 2021 ident: bib57 article-title: Identification of circulating serum mirnas as novel biomarkers in pancreatic cancer using a penalized algorithm publication-title: Int. J. Mol. Sci. – volume: 2 start-page: 110 year: 2002 end-page: 125 ident: bib13 article-title: Ensemble learning publication-title: Handb. Brain Theory Neural Netw. – volume: 21 start-page: 4802 year: 2021 ident: bib23 article-title: Combining genetic algorithms and SVM for breast cancer diagnosis using infrared thermography publication-title: Sensors – volume: 31 start-page: 112 year: 2023 end-page: 125 ident: bib29 article-title: Early diagnosis of pancreatic cancer by machine learning methods using urine biomarker combinations publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 16 start-page: 1 year: 2015 end-page: 10 ident: bib50 article-title: Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer publication-title: BMC Genom. – volume: 11 start-page: eaav4772 year: 2019 ident: bib60 article-title: A multimodality test to guide the management of patients with a pancreatic cyst publication-title: Sci. Transl. Med. – year: 2017 ident: bib48 article-title: editors. Pancreatic Cancer Biomarker Detection Using Recursive Feature Elimination Based on Support Vector Machine and Large Margin Distribution Machine publication-title: 2017 4th International Conference on Systems and Informatics (ICSAI) – volume: 228 start-page: 721 year: 2019 end-page: 729 ident: bib61 article-title: Cyst fluid biosignature to predict intraductal papillary mucinous neoplasms of the pancreas with high malignant potential publication-title: J. Am. Coll. Surg. – volume: 7 start-page: 53040 year: 2019 end-page: 53065 ident: bib12 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access – volume: 17 start-page: 28 year: 2023 ident: bib30 article-title: Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks publication-title: J. Biol. Eng. – volume: 13 start-page: 5611 year: 2021 ident: bib66 article-title: Cancer Detection and Classification by CpG Island Hypermethylation Signatures in Plasma Cell-Free DNA publication-title: Cancers – volume: 12 year: 2021 ident: bib67 article-title: TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: a bioinformatics analysis and experiments validation publication-title: Front. Immunol. – volume: 33 start-page: 173 year: 2022 end-page: 184 ident: bib42 article-title: Applications of artificial intelligence (AI) in ovarian cancer, pancreatic cancer, and image biomarker discovery publication-title: Cancer Biomark. – reference: Kumar P.V., Ganguly T., Gupta R., Pokkuluri K.S., Mishra A.K.V., Selvi V. ML and AI Based Healthcare Model to more Interpretable and Transparent in Medical Diagnosis. – volume: 16 year: 2021 ident: bib76 article-title: Proteogenomic analysis of pancreatic cancer subtypes publication-title: PLoS One – volume: 2 start-page: 1 year: 2015 end-page: 21 ident: bib21 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data – volume: 37 year: 2021 ident: bib80 article-title: Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas publication-title: Cell Rep. – volume: 9 start-page: 381 year: 2020 end-page: 386 ident: bib10 article-title: Machine learning algorithms-a review publication-title: Int. J. Sci. Res. – volume: 99 year: 2020 ident: bib59 article-title: A panel of 8 miRNAs as a novel diagnostic biomarker in pancreatic cancer publication-title: Medicine – volume: 10 start-page: 10 year: 2019 ident: bib2 article-title: Epidemiology of pancreatic cancer: global trends, etiology and risk factors publication-title: World J. Oncol. – volume: 112 start-page: 172 year: 2017 ident: bib4 article-title: A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study publication-title: Am. J. Gastroenterol. – volume: 123 start-page: 1253 year: 2020 end-page: 1261 ident: bib52 article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer publication-title: Br. J. Cancer – volume: 123 start-page: 229 year: 2019 end-page: 252 ident: bib9 article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review publication-title: Process Saf. Environ. Prot. – volume: 10 start-page: 778 year: 2019 ident: bib68 article-title: DNA methylation markers for pan-cancer prediction by deep learning publication-title: Genes – volume: 4 start-page: 51 year: 2017 end-page: 62 ident: bib11 article-title: An overview of the supervised machine learning methods publication-title: Horiz. b – volume: 10 start-page: 1212 year: 2020 ident: bib27 article-title: Machine learning and network analyses reveal disease subtypes of pancreatic cancer and their molecular characteristics publication-title: Sci. Rep. – volume: 13 year: 2021 ident: bib77 article-title: Deep learning improves pancreatic cancer diagnosis using RNA-based variants publication-title: Cancers – volume: 14 start-page: 1 year: 2014 end-page: 5 ident: bib20 article-title: Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments publication-title: BMC Med. Res. Methodol. – volume: 27 start-page: 2523 year: 2021 end-page: 2532 ident: bib62 article-title: High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9Plasma methylated DNA biomarker for pancreatic cancer publication-title: Clin. Cancer Res. – volume: 11 start-page: 155 year: 2019 ident: bib6 article-title: An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer publication-title: Cancers – volume: 33 start-page: 1060 year: 2020 end-page: 1070 ident: bib15 article-title: Discovering reinforcement learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – year: 2022 ident: bib65 article-title: Genome-wide DNA methylation profiling and identification of potential pan-cancer and tumor-specific biomarkers publication-title: Mol. Oncol. – volume: 395 start-page: 2008 year: 2020 end-page: 2020 ident: bib1 article-title: Pancreatic cancer publication-title: Lancet – volume: 7 year: 2020 ident: bib37 article-title: Regulatory responses to medical machine learning publication-title: J. Law Biosci. – volume: 71 start-page: 1359 year: 2022 end-page: 1372 ident: bib5 article-title: A faecal microbiota signature with high specificity for pancreatic cancer publication-title: Gut – year: 2023 ident: bib39 article-title: editors. Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials publication-title: Seminars in Radiation Oncology – volume: 8 year: 2017 ident: bib51 article-title: Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material publication-title: Oncotarget – volume: 14 year: 2023 ident: bib43 article-title: Imaging bridges pathology and radiology publication-title: J. Pathol. Inform. – volume: 7 start-page: 41575 year: 2016 end-page: 41583 ident: bib73 article-title: Plasma microRNA panels to diagnose pancreatic cancer: results from a multicenter study publication-title: Oncotarget – volume: 3 start-page: 58 year: 2022 end-page: 73 ident: bib8 article-title: Significance of machine learning in healthcare: Features, pillars and applications publication-title: Int. J. Intell. Netw. – volume: 109 start-page: 373 year: 2020 end-page: 440 ident: bib16 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. – volume: 5 start-page: 892 year: 2024 end-page: 902 ident: bib36 article-title: Machine learning in drug discovery: a critical review of applications and challenges publication-title: Comput. Sci. IT Res. J. – volume: 39 year: 2017 ident: bib70 article-title: A competing endogenous RNA network identifies novel mRNA, miRNA and lncRNA markers for the prognosis of diabetic pancreatic cancer publication-title: Tumor Biol. – volume: 2 start-page: 501 year: 2022 end-page: 519 ident: bib34 article-title: Significance of machine learning for detection of malicious websites on an unbalanced dataset publication-title: Digital – volume: 11 start-page: 2007 year: 2019 ident: bib25 article-title: Prediction of colon cancer stages and survival period with machine learning approach publication-title: Cancers – volume: 11 start-page: 534 year: 2020 ident: bib75 article-title: Identifying drug targets in pancreatic ductal adenocarcinoma through machine learning, analyzing biomolecular networks, and structural modeling publication-title: Front. Pharm. – volume: 13 year: 2023 ident: bib31 article-title: Proposing new early detection indicators for pancreatic cancer: combining machine learning and neural networks for serum miRNA-based diagnostic model publication-title: Front. Oncol. – volume: 13 start-page: 3091 year: 2023 ident: bib32 article-title: Identifying effective biomarkers for accurate pancreatic cancer prognosis using statistical machine learning publication-title: Diagnostics – volume: 20 start-page: 1195 year: 2020 end-page: 1204 ident: bib7 article-title: A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures publication-title: Pancreatology – volume: 11 start-page: eaav4772 issue: 501 year: 2019 ident: 10.1016/j.prp.2024.155602_bib60 article-title: A multimodality test to guide the management of patients with a pancreatic cyst publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aav4772 – year: 2016 ident: 10.1016/j.prp.2024.155602_bib14 – volume: 112 start-page: 172 issue: 1 year: 2017 ident: 10.1016/j.prp.2024.155602_bib4 article-title: A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study publication-title: Am. J. Gastroenterol. doi: 10.1038/ajg.2016.482 – volume: 33 start-page: 1060 year: 2020 ident: 10.1016/j.prp.2024.155602_bib15 article-title: Discovering reinforcement learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 issue: 5 year: 2019 ident: 10.1016/j.prp.2024.155602_bib45 article-title: RNA-binding motif protein 6 is a candidate serum biomarker for pancreatic cancer publication-title: Proteom. Clin. Appl. doi: 10.1002/prca.201900048 – volume: 11 start-page: 1188 issue: 5 year: 2000 ident: 10.1016/j.prp.2024.155602_bib22 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870050 – volume: 11 start-page: 2007 issue: 12 year: 2019 ident: 10.1016/j.prp.2024.155602_bib25 article-title: Prediction of colon cancer stages and survival period with machine learning approach publication-title: Cancers doi: 10.3390/cancers11122007 – volume: 12 start-page: 1534 issue: 6 year: 2020 ident: 10.1016/j.prp.2024.155602_bib54 article-title: Systemic proteome alterations linked to early stage pancreatic cancer in diabetic patients publication-title: Cancers doi: 10.3390/cancers12061534 – volume: 27 start-page: 2523 issue: 9 year: 2021 ident: 10.1016/j.prp.2024.155602_bib62 article-title: High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9Plasma methylated DNA biomarker for pancreatic cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-0235 – volume: 37 issue: 3 year: 2021 ident: 10.1016/j.prp.2024.155602_bib80 article-title: Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109873 – volume: 22 start-page: 1007 issue: 3 year: 2021 ident: 10.1016/j.prp.2024.155602_bib57 article-title: Identification of circulating serum mirnas as novel biomarkers in pancreatic cancer using a penalized algorithm publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22031007 – volume: 12 start-page: 1445 issue: 5 year: 2021 ident: 10.1016/j.prp.2024.155602_bib78 article-title: Detection of Pancreatic Ductal Adenocarcinoma by A qPCR-based Normalizer-free Circulating Extracellular Vesicles RNA Signature publication-title: J. Cancer doi: 10.7150/jca.50716 – volume: 13 start-page: 105 issue: 02 year: 2019 ident: 10.1016/j.prp.2024.155602_bib53 article-title: Pancreatic cancer biomarker detection by two support vector strategies for recursive feature elimination publication-title: Biomark. Med. doi: 10.2217/bmm-2018-0273 – volume: 13 start-page: 3091 issue: 19 year: 2023 ident: 10.1016/j.prp.2024.155602_bib32 article-title: Identifying effective biomarkers for accurate pancreatic cancer prognosis using statistical machine learning publication-title: Diagnostics doi: 10.3390/diagnostics13193091 – volume: 122 start-page: 692 issue: 5 year: 2020 ident: 10.1016/j.prp.2024.155602_bib18 article-title: Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients publication-title: Br. J. Cancer doi: 10.1038/s41416-019-0694-0 – volume: 147 start-page: 2537 issue: 9 year: 2020 ident: 10.1016/j.prp.2024.155602_bib38 article-title: Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials publication-title: Int. J. Cancer doi: 10.1002/ijc.33240 – volume: 13 issue: 11 year: 2021 ident: 10.1016/j.prp.2024.155602_bib77 article-title: Deep learning improves pancreatic cancer diagnosis using RNA-based variants publication-title: Cancers doi: 10.3390/cancers13112654 – volume: 11 start-page: 155 issue: 2 year: 2019 ident: 10.1016/j.prp.2024.155602_bib6 article-title: An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer publication-title: Cancers doi: 10.3390/cancers11020155 – volume: 3 start-page: 58 year: 2022 ident: 10.1016/j.prp.2024.155602_bib8 article-title: Significance of machine learning in healthcare: Features, pillars and applications publication-title: Int. J. Intell. Netw. – volume: 26 start-page: 2411 issue: 10 year: 2020 ident: 10.1016/j.prp.2024.155602_bib49 article-title: Predicted prognosis of patients with pancreatic cancer by machine learning publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-1247 – volume: 14 year: 2023 ident: 10.1016/j.prp.2024.155602_bib43 article-title: Imaging bridges pathology and radiology publication-title: J. Pathol. Inform. doi: 10.1016/j.jpi.2023.100298 – volume: 13 start-page: 5611 issue: 22 year: 2021 ident: 10.1016/j.prp.2024.155602_bib66 article-title: Cancer Detection and Classification by CpG Island Hypermethylation Signatures in Plasma Cell-Free DNA publication-title: Cancers doi: 10.3390/cancers13225611 – volume: 8 year: 2020 ident: 10.1016/j.prp.2024.155602_bib55 article-title: Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method publication-title: Front. Cell Dev. Biol. – volume: 2 start-page: 501 issue: 4 year: 2022 ident: 10.1016/j.prp.2024.155602_bib34 article-title: Significance of machine learning for detection of malicious websites on an unbalanced dataset publication-title: Digital doi: 10.3390/digital2040027 – volume: 39 issue: 6 year: 2017 ident: 10.1016/j.prp.2024.155602_bib70 article-title: A competing endogenous RNA network identifies novel mRNA, miRNA and lncRNA markers for the prognosis of diabetic pancreatic cancer publication-title: Tumor Biol. doi: 10.1177/1010428317707882 – volume: 78 start-page: 3688 issue: 13 year: 2018 ident: 10.1016/j.prp.2024.155602_bib71 article-title: miRNA profiling of magnetic nanopore–isolated extracellular vesicles for the diagnosis of pancreatic cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3703 – volume: 10 start-page: 10 issue: 1 year: 2019 ident: 10.1016/j.prp.2024.155602_bib2 article-title: Epidemiology of pancreatic cancer: global trends, etiology and risk factors publication-title: World J. Oncol. doi: 10.14740/wjon1166 – volume: 16 issue: 9 year: 2021 ident: 10.1016/j.prp.2024.155602_bib76 article-title: Proteogenomic analysis of pancreatic cancer subtypes publication-title: PLoS One doi: 10.1371/journal.pone.0257084 – volume: 228 start-page: 721 issue: 5 year: 2019 ident: 10.1016/j.prp.2024.155602_bib61 article-title: Cyst fluid biosignature to predict intraductal papillary mucinous neoplasms of the pancreas with high malignant potential publication-title: J. Am. Coll. Surg. doi: 10.1016/j.jamcollsurg.2019.02.040 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.prp.2024.155602_bib21 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – year: 2015 ident: 10.1016/j.prp.2024.155602_bib33 publication-title: Chall. Mach. Learn. Model Manag. – volume: 43 start-page: 851 issue: 9 year: 2021 ident: 10.1016/j.prp.2024.155602_bib47 article-title: Ensemble based biomarker identification on pancreatic ductal adenocarcinoma gene expressions publication-title: Int. J. Comput. Appl. – volume: 109 start-page: 373 issue: 2 year: 2020 ident: 10.1016/j.prp.2024.155602_bib16 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. doi: 10.1007/s10994-019-05855-6 – year: 2022 ident: 10.1016/j.prp.2024.155602_bib65 article-title: Genome-wide DNA methylation profiling and identification of potential pan-cancer and tumor-specific biomarkers publication-title: Mol. Oncol. doi: 10.1002/1878-0261.13176 – volume: 2 start-page: 110 issue: 1 year: 2002 ident: 10.1016/j.prp.2024.155602_bib13 article-title: Ensemble learning publication-title: Handb. Brain Theory Neural Netw. – volume: 10 start-page: 778 issue: 10 year: 2019 ident: 10.1016/j.prp.2024.155602_bib68 article-title: DNA methylation markers for pan-cancer prediction by deep learning publication-title: Genes doi: 10.3390/genes10100778 – volume: 123 start-page: 229 year: 2019 ident: 10.1016/j.prp.2024.155602_bib9 article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.01.013 – volume: 18 start-page: 493 issue: 7 year: 2021 ident: 10.1016/j.prp.2024.155602_bib3 article-title: Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-021-00457-x – volume: 17 start-page: 1469 issue: 4 year: 2023 ident: 10.1016/j.prp.2024.155602_bib26 article-title: Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-023-00779-2 – ident: 10.1016/j.prp.2024.155602_bib41 – volume: 395 start-page: 2008 issue: 10242 year: 2020 ident: 10.1016/j.prp.2024.155602_bib1 article-title: Pancreatic cancer publication-title: Lancet doi: 10.1016/S0140-6736(20)30974-0 – volume: 99 issue: 38 year: 2020 ident: 10.1016/j.prp.2024.155602_bib59 article-title: A panel of 8 miRNAs as a novel diagnostic biomarker in pancreatic cancer publication-title: Medicine doi: 10.1097/MD.0000000000022261 – volume: 4 start-page: 51 year: 2017 ident: 10.1016/j.prp.2024.155602_bib11 article-title: An overview of the supervised machine learning methods publication-title: Horiz. b doi: 10.20544/HORIZONS.B.04.1.17.P05 – volume: 13 year: 2023 ident: 10.1016/j.prp.2024.155602_bib31 article-title: Proposing new early detection indicators for pancreatic cancer: combining machine learning and neural networks for serum miRNA-based diagnostic model publication-title: Front. Oncol. doi: 10.3389/fonc.2023.1244578 – volume: 7 issue: 1 year: 2020 ident: 10.1016/j.prp.2024.155602_bib37 article-title: Regulatory responses to medical machine learning publication-title: J. Law Biosci. doi: 10.1093/jlb/lsaa002 – year: 2020 ident: 10.1016/j.prp.2024.155602_bib69 publication-title: Use Evidential Reason. Model Biomark. Pancreat. Cancer Predict. – volume: 33 start-page: 173 issue: 2 year: 2022 ident: 10.1016/j.prp.2024.155602_bib42 article-title: Applications of artificial intelligence (AI) in ovarian cancer, pancreatic cancer, and image biomarker discovery publication-title: Cancer Biomark. doi: 10.3233/CBM-210301 – volume: 11 year: 2020 ident: 10.1016/j.prp.2024.155602_bib56 article-title: A transcriptomics-based meta-analysis combined with machine learning identifies a secretory biomarker panel for diagnosis of pancreatic adenocarcinoma publication-title: Front. Genet. doi: 10.3389/fgene.2020.572284 – volume: 10 start-page: 1212 issue: 1 year: 2020 ident: 10.1016/j.prp.2024.155602_bib27 article-title: Machine learning and network analyses reveal disease subtypes of pancreatic cancer and their molecular characteristics publication-title: Sci. Rep. doi: 10.1038/s41598-020-58290-2 – year: 2023 ident: 10.1016/j.prp.2024.155602_bib39 article-title: editors. Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials – volume: 273 start-page: e273 issue: 6 year: 2021 ident: 10.1016/j.prp.2024.155602_bib28 article-title: Noninvasive discrimination of low and high-risk pancreatic intraductal papillary mucinous neoplasms publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004066 – volume: 11 start-page: 534 year: 2020 ident: 10.1016/j.prp.2024.155602_bib75 article-title: Identifying drug targets in pancreatic ductal adenocarcinoma through machine learning, analyzing biomolecular networks, and structural modeling publication-title: Front. Pharm. doi: 10.3389/fphar.2020.00534 – volume: 8 issue: 64 year: 2017 ident: 10.1016/j.prp.2024.155602_bib51 article-title: Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material publication-title: Oncotarget doi: 10.18632/oncotarget.22601 – volume: 16 issue: 6 year: 2021 ident: 10.1016/j.prp.2024.155602_bib64 article-title: Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data publication-title: PloS One doi: 10.1371/journal.pone.0251876 – start-page: 359 year: 2014 ident: 10.1016/j.prp.2024.155602_bib19 article-title: Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: the Newcastle–Ottawa scale and the RTI item bank publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S66677 – volume: 17 start-page: 28 issue: 1 year: 2023 ident: 10.1016/j.prp.2024.155602_bib30 article-title: Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks publication-title: J. Biol. Eng. doi: 10.1186/s13036-023-00340-0 – volume: 16 start-page: 1 issue: 9 year: 2015 ident: 10.1016/j.prp.2024.155602_bib50 article-title: Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer publication-title: BMC Genom. – volume: 7 start-page: 80033 issue: 48 year: 2016 ident: 10.1016/j.prp.2024.155602_bib63 article-title: New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer publication-title: Oncotarget doi: 10.18632/oncotarget.12406 – volume: 10 start-page: 1305 issue: 8 year: 2016 ident: 10.1016/j.prp.2024.155602_bib46 article-title: Plasma protein profiling in a stage defined pancreatic cancer cohort–implications for early diagnosis publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2016.07.001 – volume: 26 start-page: 3248 issue: 13 year: 2020 ident: 10.1016/j.prp.2024.155602_bib72 article-title: A multianalyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma publication-title: Clin. Cancer Res doi: 10.1158/1078-0432.CCR-19-3313 – volume: 31 start-page: 112 issue: 1 year: 2023 ident: 10.1016/j.prp.2024.155602_bib29 article-title: Early diagnosis of pancreatic cancer by machine learning methods using urine biomarker combinations publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.3974 – volume: 14 start-page: 1 year: 2014 ident: 10.1016/j.prp.2024.155602_bib20 article-title: Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-45 – volume: 123 start-page: 1253 issue: 8 year: 2020 ident: 10.1016/j.prp.2024.155602_bib74 article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer publication-title: Br. J. Cancer doi: 10.1038/s41416-020-0997-1 – volume: 10 issue: 3 year: 2020 ident: 10.1016/j.prp.2024.155602_bib40 article-title: Reporting quality of studies using machine learning models for medical diagnosis: a systematic review publication-title: BMJ Open doi: 10.1136/bmjopen-2019-034568 – volume: 24 start-page: 7781 issue: 9 year: 2023 ident: 10.1016/j.prp.2024.155602_bib44 article-title: Machine learning models for the identification of prognostic and predictive cancer biomarkers: a systematic review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24097781 – volume: 113 start-page: 14330 issue: 50 year: 2016 ident: 10.1016/j.prp.2024.155602_bib35 article-title: Evaluating the evaluation of cancer driver genes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1616440113 – volume: 7 start-page: 41575 issue: 27 year: 2016 ident: 10.1016/j.prp.2024.155602_bib73 article-title: Plasma microRNA panels to diagnose pancreatic cancer: results from a multicenter study publication-title: Oncotarget doi: 10.18632/oncotarget.9491 – volume: 5 start-page: 892 issue: 4 year: 2024 ident: 10.1016/j.prp.2024.155602_bib36 article-title: Machine learning in drug discovery: a critical review of applications and challenges publication-title: Comput. Sci. IT Res. J. doi: 10.51594/csitrj.v5i4.1048 – year: 2021 ident: 10.1016/j.prp.2024.155602_bib58 article-title: Multi-biomarker panel prediction model for diagnosis of pancreatic cancer publication-title: J. Hepato-Biliary-Pancreat. Sci. doi: 10.14701/ahbps.BP-BEST-OP-2 – volume: 149 start-page: 87 issue: 1 year: 2011 ident: 10.1016/j.prp.2024.155602_bib17 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery doi: 10.1016/j.surg.2010.03.023 – volume: 9 start-page: 381 issue: 1 year: 2020 ident: 10.1016/j.prp.2024.155602_bib10 article-title: Machine learning algorithms-a review publication-title: Int. J. Sci. Res. – volume: 21 start-page: 4802 issue: 14 year: 2021 ident: 10.1016/j.prp.2024.155602_bib23 article-title: Combining genetic algorithms and SVM for breast cancer diagnosis using infrared thermography publication-title: Sensors doi: 10.3390/s21144802 – volume: 123 start-page: 1253 issue: 8 year: 2020 ident: 10.1016/j.prp.2024.155602_bib52 article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer publication-title: Br. J. Cancer doi: 10.1038/s41416-020-0997-1 – volume: 7 issue: 52 year: 2021 ident: 10.1016/j.prp.2024.155602_bib79 article-title: Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics publication-title: Sci. Adv. doi: 10.1126/sciadv.abh2724 – volume: 7 start-page: 53040 year: 2019 ident: 10.1016/j.prp.2024.155602_bib12 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – volume: 20 start-page: 1195 issue: 6 year: 2020 ident: 10.1016/j.prp.2024.155602_bib7 article-title: A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures publication-title: Pancreatology doi: 10.1016/j.pan.2020.07.399 – year: 2017 ident: 10.1016/j.prp.2024.155602_bib48 article-title: editors. Pancreatic Cancer Biomarker Detection Using Recursive Feature Elimination Based on Support Vector Machine and Large Margin Distribution Machine – volume: 71 start-page: 1359 issue: 7 year: 2022 ident: 10.1016/j.prp.2024.155602_bib5 article-title: A faecal microbiota signature with high specificity for pancreatic cancer publication-title: Gut doi: 10.1136/gutjnl-2021-324755 – volume: 41 start-page: 368 issue: 2 year: 2021 ident: 10.1016/j.prp.2024.155602_bib24 article-title: Distinguishing rectal cancer from colon cancer based on the support vector machine method and RNA-sequencing data publication-title: Curr. Med. Sci. doi: 10.1007/s11596-021-2356-8 – volume: 12 year: 2021 ident: 10.1016/j.prp.2024.155602_bib67 article-title: TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: a bioinformatics analysis and experiments validation publication-title: Front. Immunol. |
| SSID | ssj0007041 |
| Score | 2.406775 |
| SecondaryResourceType | review_article |
| Snippet | Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 155602 |
| SubjectTerms | Algorithms Biomarkers Biomarkers, Tumor - analysis Diagnosis Humans Machine Learning Multiomics Pancreatic cancer Pancreatic Neoplasms - diagnosis Prognosis |
| Title | Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration |
| URI | https://dx.doi.org/10.1016/j.prp.2024.155602 https://www.ncbi.nlm.nih.gov/pubmed/39357184 https://www.proquest.com/docview/3112526338 |
| Volume | 263 |
| WOSCitedRecordID | wos001330228500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1618-0631 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007041 issn: 0344-0338 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOsZexq5ddika7GnGw5EcXx7DaHdrSxnZyJuRFLl25tglTkpX9gf3r3Z0sd12pKwPezHB2EL4-3LOkfSdcxB6I-KRN-SpcGnKU9f3Y-5ycLtuzIcSwtshTXWx5-8H4dFRNJ3Gx73e7yYX5qwIyzI6P49P_yvUcA_AVqmzt4C7HRRuwG8AHa4AO1z_CfhDLY-UTT-IE4cVJ9UyX2ULU45ZJdwrTc6ydvKZ1Qp1ikMwDiaOFEoPJlT_cCPGy2tnrfcVtATRVcnMtaP0pW3FiQZhG-oes1XWpsLYmkKZrUtgMrO6w571BWeZ6S7ljJfK5nxhqt9Y6w4yWC4UuTthpTmg-pCxC3Bt7V72VzZnSoOvPQqr2SLv1AVZNWfA5cw9kD8L9qOqdB9jZx-i7IUdwW57EN_m_3XWkQKjPGpKwzSmnFhjaYwxhEqBTuf-20-YLYs5eClVs5T477pnr9bkvuYrWwVjI46bJzBEooZIzBBbaJuEozjqo-3xp73p5zYsCD3dRrWdd3PErsWG1-axKUjatAjSwdDkAbpvVzF4bNj3EPVk-QjdPbQ6jcfolyUhbkiIOxJioADuSIivkhADCXFHQmxIiFsSYk1CfImEWJEQXyLhE_Rtf2_y_qNr-3y4go7oyg2Jx2czykjMAsk9XwkTvIClAvxFnM6k5DwQxBPcE4JQqQoWhTzk0mckCuQooE9Rv6xK-Qxh5WF4RGJOgtBnDKyQJIz6QRAJLmceGyCv-bCJsEXwVS-WItkI6AC9bV85NRVgbnrYb9BKbAhrQtMEmHfTa68bZBMw7-rMjpWyWtcJhfXQCGhNowHaMZC3s1BZ9RBa-s9vM8MX6F73d3qJ-qvlWr5Cd8TZKq-Xu2grnEa7lrp_ALSU2TE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+and+biomarkers+identification+for+pancreatic+cancer+diagnosis+using+multi-omics+data+integration&rft.jtitle=Pathology%2C+research+and+practice&rft.au=Rouzbahani%2C+Arian+Karimi&rft.au=Khalili-Tanha%2C+Ghazaleh&rft.au=Rajabloo%2C+Yasamin&rft.au=Khojasteh-Leylakoohi%2C+Fatemeh&rft.date=2024-11-01&rft.issn=0344-0338&rft.volume=263&rft.spage=155602&rft_id=info:doi/10.1016%2Fj.prp.2024.155602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prp_2024_155602 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0344-0338&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0344-0338&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0344-0338&client=summon |