Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration

Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolut...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pathology, research and practice Ročník 263; s. 155602
Hlavní autori: Rouzbahani, Arian Karimi, Khalili-Tanha, Ghazaleh, Rajabloo, Yasamin, Khojasteh-Leylakoohi, Fatemeh, Garjan, Hassan Shokri, Nazari, Elham, Avan, Amir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Elsevier GmbH 01.11.2024
Predmet:
ISSN:0344-0338, 1618-0631, 1618-0631
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes. The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment. Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes. The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease
AbstractList Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes. The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment. Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes. The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease
Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes.PURPOSEPancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes.The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment.METHODSThe search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment.Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes.RESULTSOur results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes.The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease.CONCLUSIONSThe application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease.
Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes. The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment. Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes. The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease.
ArticleNumber 155602
Author Khojasteh-Leylakoohi, Fatemeh
Rajabloo, Yasamin
Nazari, Elham
Garjan, Hassan Shokri
Khalili-Tanha, Ghazaleh
Rouzbahani, Arian Karimi
Avan, Amir
Author_xml – sequence: 1
  givenname: Arian Karimi
  surname: Rouzbahani
  fullname: Rouzbahani, Arian Karimi
  organization: Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
– sequence: 2
  givenname: Ghazaleh
  surname: Khalili-Tanha
  fullname: Khalili-Tanha, Ghazaleh
  organization: Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
– sequence: 3
  givenname: Yasamin
  surname: Rajabloo
  fullname: Rajabloo, Yasamin
  organization: Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
– sequence: 4
  givenname: Fatemeh
  surname: Khojasteh-Leylakoohi
  fullname: Khojasteh-Leylakoohi, Fatemeh
  organization: Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
– sequence: 5
  givenname: Hassan Shokri
  surname: Garjan
  fullname: Garjan, Hassan Shokri
  organization: Department of Health Information Technology, School of Management University of Medical Sciences, Tabriz, Iran
– sequence: 6
  givenname: Elham
  surname: Nazari
  fullname: Nazari, Elham
  email: Elham.Nazari@sbmu.ac.ir
  organization: Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 7
  givenname: Amir
  surname: Avan
  fullname: Avan, Amir
  email: avana@mums.ac.ir
  organization: Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39357184$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLeFP4AL8pFLFn8kzkacUEULUhEXOFv-mGxnSexgO5WQ-OPxdtsLh55mRnq_J817F-QsxACEvOVsyxlXHw7bJS1bwUS75V2nmHhBNlzxXcOU5Gdkw2TbNkzK3Tm5yPnAGOtZy1-RcznIrue7dkP-fjPuDgPQCUwKGPbUTPuYsNzNmZrgqcU4m_QLUqboIRQc0ZmCMdAxJrqY4BLU21FXV0jUo9mHmDHTNR_t5nUq2MQZXabeFEMxFNinB4vX5OVopgxvHucl-Xn9-cfVl-b2-83Xq0-3jZOdLE0vmPVeGjEYBZa1LR8EU2Z0HWfD6AGsVU4wZ5lzQkLHBtXb3kJrxE5Bp-QleX_yXVL8vUIuesbsYJpMgLhmLTkXnVA1qCp99yhd7QxeLwnr-3_0U2JV0J8ELsWcE4zaYXn4piSDk-ZMH7vRh4ou-tiNPnVTSf4f-WT-HPPxxECN5x4h6ewQatAeE7iifcRn6H-mlqmG
CitedBy_id crossref_primary_10_4239_wjd_v16_i7_106218
crossref_primary_10_1038_s41598_025_91007_x
crossref_primary_10_1016_j_csbj_2025_09_028
Cites_doi 10.1126/scitranslmed.aav4772
10.1038/ajg.2016.482
10.1002/prca.201900048
10.1109/72.870050
10.3390/cancers11122007
10.3390/cancers12061534
10.1158/1078-0432.CCR-20-0235
10.1016/j.celrep.2021.109873
10.3390/ijms22031007
10.7150/jca.50716
10.2217/bmm-2018-0273
10.3390/diagnostics13193091
10.1038/s41416-019-0694-0
10.1002/ijc.33240
10.3390/cancers13112654
10.3390/cancers11020155
10.1158/1078-0432.CCR-19-1247
10.1016/j.jpi.2023.100298
10.3390/cancers13225611
10.3390/digital2040027
10.1177/1010428317707882
10.1158/0008-5472.CAN-17-3703
10.14740/wjon1166
10.1371/journal.pone.0257084
10.1016/j.jamcollsurg.2019.02.040
10.1186/s40537-014-0007-7
10.1007/s10994-019-05855-6
10.1002/1878-0261.13176
10.3390/genes10100778
10.1016/j.psep.2019.01.013
10.1038/s41575-021-00457-x
10.1007/s12079-023-00779-2
10.1016/S0140-6736(20)30974-0
10.1097/MD.0000000000022261
10.20544/HORIZONS.B.04.1.17.P05
10.3389/fonc.2023.1244578
10.1093/jlb/lsaa002
10.3233/CBM-210301
10.3389/fgene.2020.572284
10.1038/s41598-020-58290-2
10.1097/SLA.0000000000004066
10.3389/fphar.2020.00534
10.18632/oncotarget.22601
10.1371/journal.pone.0251876
10.2147/CLEP.S66677
10.1186/s13036-023-00340-0
10.18632/oncotarget.12406
10.1016/j.molonc.2016.07.001
10.1158/1078-0432.CCR-19-3313
10.55730/1300-0632.3974
10.1186/1471-2288-14-45
10.1038/s41416-020-0997-1
10.1136/bmjopen-2019-034568
10.3390/ijms24097781
10.1073/pnas.1616440113
10.18632/oncotarget.9491
10.51594/csitrj.v5i4.1048
10.14701/ahbps.BP-BEST-OP-2
10.1016/j.surg.2010.03.023
10.3390/s21144802
10.1126/sciadv.abh2724
10.1109/ACCESS.2019.2912200
10.1016/j.pan.2020.07.399
10.1136/gutjnl-2021-324755
10.1007/s11596-021-2356-8
ContentType Journal Article
Copyright 2024 Elsevier GmbH
Copyright © 2024 Elsevier GmbH. All rights reserved.
Copyright_xml – notice: 2024 Elsevier GmbH
– notice: Copyright © 2024 Elsevier GmbH. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.prp.2024.155602
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1618-0631
ExternalDocumentID 39357184
10_1016_j_prp_2024_155602
S0344033824005132
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
123
1B1
1~.
1~5
29O
3O-
3V.
4.4
457
4CK
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
88I
8AF
8FE
8FH
8FI
8FJ
8G5
8P~
8R4
8R5
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AAKPP
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABBQC
ABFNM
ABGSF
ABLJU
ABMAC
ABMZM
ABUDA
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACPRK
ACRLP
ADBBV
ADEZE
ADKUU
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFJKZ
AFKRA
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKOJK
BLC
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DU5
DWQXO
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LK8
M1P
M2O
M2P
M2Q
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PADUT
PC.
PEA
PQQKQ
PRG
PROAC
PSQYO
Q2X
Q38
R2-
RIG
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SJFOW
SSH
SSU
SSZ
T5I
T5J
T5K
UDS
UKHRP
X7M
YCJ
ZGI
ZXP
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
CITATION
EFKBS
EFLBG
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c353t-720bdd3a29a6eb04419206afc5109fdeebb6c20cb0cc23e50967b7be4a286e563
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001330228500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0344-0338
1618-0631
IngestDate Sun Sep 28 02:50:40 EDT 2025
Thu Apr 03 07:01:50 EDT 2025
Sat Nov 29 03:31:09 EST 2025
Tue Nov 18 22:42:22 EST 2025
Sat Nov 23 15:55:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomarkers
Prognosis
Diagnosis
Pancreatic cancer
Machine learning
Language English
License Copyright © 2024 Elsevier GmbH. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-720bdd3a29a6eb04419206afc5109fdeebb6c20cb0cc23e50967b7be4a286e563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 39357184
PQID 3112526338
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3112526338
pubmed_primary_39357184
crossref_citationtrail_10_1016_j_prp_2024_155602
crossref_primary_10_1016_j_prp_2024_155602
elsevier_sciencedirect_doi_10_1016_j_prp_2024_155602
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Pathology, research and practice
PublicationTitleAlternate Pathol Res Pract
PublicationYear 2024
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Zhang, Wang, Zulfiqar, Lv, Dao, Lin (bib55) 2020; 8
Wang, Yao, Gong, Lu, Pang, Li (bib79) 2021; 7
Tokheim, Papadopoulos, Kinzler, Vogelstein, Karchin (bib35) 2016; 113
Kang, Chowdhry, Pugh, Park (bib39) 2023
Alizadeh Savareh, Asadzadeh Aghdaie, Behmanesh, Bashiri, Sadeghi, Zali (bib7) 2020; 20
Fan (bib69) 2020
Bagheri, Akbari, Mirbagheri (bib9) 2019; 123
Roth, Bose, Alhamdani, Mustafa, Tjaden, Zamzow (bib28) 2021; 273
Yang, LaRiviere, Ko, Till, Christensen, Yee (bib72) 2020; 26
Schelter, Biessmann, Januschowski, Salinas, Seufert, Szarvas (bib33) 2015
Schperberg, Boichard, Tsigelny, Richard, Kurzrock (bib38) 2020; 147
Mizrahi, Surana, Valle, Shroff (bib1) 2020; 395
Javaid, Haleem, Singh, Suman, Rab (bib8) 2022; 3
Yao, Wang, Jia, Zhao (bib70) 2017; 39
Yusuf, Atal, Li, Smith, Ravaud, Fergie (bib40) 2020; 10
Iwatate, Hoshino, Yokota, Ishige, Itami, Mori (bib52) 2020; 123
Kartal, Schmidt, Molina-Montes, Rodríguez-Perales, Wirbel, Maistrenko (bib5) 2022; 71
Lo, Mertz, Loeb (bib20) 2014; 14
Resmini, Silva, Araujo, Medeiros, Muchaluat-Saade, Conci (bib23) 2021; 21
Udegbe, Ebulue, Ebulue, Ekesiobi (bib36) 2024; 5
Margulis, Pladevall, Riera-Guardia, Varas-Lorenzo, Hazell, Berkman (bib19) 2014
Springer, Masica, Dal Molin, Douville, Thoburn, Afsari (bib60) 2019; 11
Mikdadi, O’Connell, Meacham, Dugan, Ojiere, Carlson (bib42) 2022; 33
Lee, Yoon, Lee, Han, Byun, Kang (bib58) 2021
Malhotra, Rachet, Bonaventure, Pereira, Woods (bib64) 2021; 16
Pahari, Basak, Sarkar (bib47) 2021; 43
Ko, Bhagwat, Black, Yee, Na, Fisher (bib71) 2018; 78
Van Engelen, Hoos (bib16) 2020; 109
Khatri, Bhasin (bib56) 2020; 11
Qin, Zhao, Guo, Zhu, Zhang, Min (bib78) 2021; 12
Long, Jung, Anh, Yan, Nghi, Park (bib6) 2019; 11
Kwon, Kim, Lee, Namkung, Yun, Yi (bib50) 2015; 16
Duan, Hu, Fan, Xiong, Han, Wang (bib45) 2019; 13
Nasteski (bib11) 2017; 4
Liu, Liu, Pan, Li, Yang, Li (bib68) 2019; 10
Dietterich (bib13) 2002; 2
Acer, Bulucu, Içer, Latifoğlu (bib29) 2023; 31
Huang, Soupir, Schlick, Teng, Sahin, Permuth (bib66) 2021; 13
Wang, Liu, Ma, Tan, Du, Lv (bib53) 2019; 13
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib21) 2015; 2
Gerdtsson, Wingren, Persson, Delfani, Nordström, Ren (bib46) 2016; 10
Kaur, Smith, Patel, Menning, Watley, Malik (bib4) 2017; 112
Majumder, Taylor, Foote, Berger, Wu, Mahoney (bib62) 2021; 27
Celebi, Aydin (bib14) 2016
Minssen, Gerke, Aboy, Price, Cohen (bib37) 2020; 7
Ibrahim, Op de Beeck, Fransen, Peeters, Van Camp (bib65) 2022
Isaev, Jiang, Wu, Lee, Watters, Fort (bib80) 2021; 37
Gupta, Chiang, Sahoo, Mohapatra, You, Onthoni (bib25) 2019; 11
Khalili-Tanha, Mohit, Asadnia, Khazaei, Dashtiahangar, Maftooh (bib26) 2023; 17
Deng, Wang, Liu (bib59) 2020; 99
Shevade, Keerthi, Bhattacharyya, Murthy (bib22) 2000; 11
Lee, Lee, Park, Kim, Kim, Jung (bib57) 2021; 22
Al-Fatlawi, Malekian, García, Henschel, Kim, Dahl (bib77) 2021; 13
Ye, Li, Wang, Wu, Yi, Shi (bib67) 2021; 12
Peng, Pan, Yan, Brand, Petersen, Chari (bib54) 2020; 12
Maker, Hu, Kadkol, Hong, Brugge, Winter (bib61) 2019; 228
Yuan, Tang, Xie, Wang, Chen, Qi (bib63) 2016; 7
Hansmann, Klauschen, Samek, Müller, Donnadieu, Scharf (bib43) 2023; 14
Oh, Hessel, Czarnecki, Xu, van Hasselt, Singh (bib15) 2020; 33
Yan, Liu, Wang, Han, Wang, Liu (bib75) 2020; 11
Blyuss, Zaikin, Cherepanova, Munblit, Kiseleva, Prytomanova (bib18) 2020; 122
Lv, Wang, Tan, Du, Liu, Wang (bib48) 2017
Cao, Liu, Xu, You, Wang, Lou (bib73) 2016; 7
Hsieh, Lu, Lee, Chiu, Hsu, Li (bib17) 2011; 149
Kumar P.V., Ganguly T., Gupta R., Pokkuluri K.S., Mishra A.K.V., Selvi V. ML and AI Based Healthcare Model to more Interpretable and Transparent in Medical Diagnosis.
Gress, Lausser, Schirra, Ortmüller, Diels, Kong (bib51) 2017; 8
Kafita, Nkhoma, Zulu, Sinkala (bib76) 2021; 16
Mahesh (bib10) 2020; 9
Rawla, Sunkara, Gaduputi (bib2) 2019; 10
Karar, El-Fishawy, Radad (bib30) 2023; 17
Sinkala, Mulder, Martin (bib27) 2020; 10
Shrestha, Mahmood (bib12) 2019; 7
Al-Tashi, Saad, Muneer, Qureshi, Mirjalili, Sheshadri (bib44) 2023; 24
Iwatate, Hoshino, Yokota, Ishige, Itami, Mori (bib74) 2020; 123
Zhang, Wu, Gong, Ye, Zhao, Li (bib24) 2021; 41
Abu-Khudir, Hafsa, Badr (bib32) 2023; 13
Klein (bib3) 2021; 18
Ul Hassan, Ali, Ul Abideen, Khan, Kouatly (bib34) 2022; 2
Yokoyama, Hamada, Higashi, Matsuo, Maemura, Kurahara (bib49) 2020; 26
Chi, Chen, Wang, Zhang, Jiang, Zhang (bib31) 2023; 13
Ibrahim (10.1016/j.prp.2024.155602_bib65) 2022
Gerdtsson (10.1016/j.prp.2024.155602_bib46) 2016; 10
Javaid (10.1016/j.prp.2024.155602_bib8) 2022; 3
Fan (10.1016/j.prp.2024.155602_bib69) 2020
Wang (10.1016/j.prp.2024.155602_bib79) 2021; 7
Celebi (10.1016/j.prp.2024.155602_bib14) 2016
Yokoyama (10.1016/j.prp.2024.155602_bib49) 2020; 26
Springer (10.1016/j.prp.2024.155602_bib60) 2019; 11
Kaur (10.1016/j.prp.2024.155602_bib4) 2017; 112
Khatri (10.1016/j.prp.2024.155602_bib56) 2020; 11
Dietterich (10.1016/j.prp.2024.155602_bib13) 2002; 2
Gress (10.1016/j.prp.2024.155602_bib51) 2017; 8
Lee (10.1016/j.prp.2024.155602_bib57) 2021; 22
Qin (10.1016/j.prp.2024.155602_bib78) 2021; 12
Yuan (10.1016/j.prp.2024.155602_bib63) 2016; 7
Sinkala (10.1016/j.prp.2024.155602_bib27) 2020; 10
Cao (10.1016/j.prp.2024.155602_bib73) 2016; 7
Shevade (10.1016/j.prp.2024.155602_bib22) 2000; 11
Rawla (10.1016/j.prp.2024.155602_bib2) 2019; 10
Van Engelen (10.1016/j.prp.2024.155602_bib16) 2020; 109
Zhang (10.1016/j.prp.2024.155602_bib55) 2020; 8
Huang (10.1016/j.prp.2024.155602_bib66) 2021; 13
Tokheim (10.1016/j.prp.2024.155602_bib35) 2016; 113
Abu-Khudir (10.1016/j.prp.2024.155602_bib32) 2023; 13
Shrestha (10.1016/j.prp.2024.155602_bib12) 2019; 7
Blyuss (10.1016/j.prp.2024.155602_bib18) 2020; 122
Acer (10.1016/j.prp.2024.155602_bib29) 2023; 31
Iwatate (10.1016/j.prp.2024.155602_bib74) 2020; 123
Ul Hassan (10.1016/j.prp.2024.155602_bib34) 2022; 2
Malhotra (10.1016/j.prp.2024.155602_bib64) 2021; 16
Al-Tashi (10.1016/j.prp.2024.155602_bib44) 2023; 24
Pahari (10.1016/j.prp.2024.155602_bib47) 2021; 43
Maker (10.1016/j.prp.2024.155602_bib61) 2019; 228
Ye (10.1016/j.prp.2024.155602_bib67) 2021; 12
Mizrahi (10.1016/j.prp.2024.155602_bib1) 2020; 395
Alizadeh Savareh (10.1016/j.prp.2024.155602_bib7) 2020; 20
Isaev (10.1016/j.prp.2024.155602_bib80) 2021; 37
Long (10.1016/j.prp.2024.155602_bib6) 2019; 11
Kang (10.1016/j.prp.2024.155602_bib39) 2023
Al-Fatlawi (10.1016/j.prp.2024.155602_bib77) 2021; 13
Karar (10.1016/j.prp.2024.155602_bib30) 2023; 17
Duan (10.1016/j.prp.2024.155602_bib45) 2019; 13
Lee (10.1016/j.prp.2024.155602_bib58) 2021
Gupta (10.1016/j.prp.2024.155602_bib25) 2019; 11
Yusuf (10.1016/j.prp.2024.155602_bib40) 2020; 10
Wang (10.1016/j.prp.2024.155602_bib53) 2019; 13
Nasteski (10.1016/j.prp.2024.155602_bib11) 2017; 4
Minssen (10.1016/j.prp.2024.155602_bib37) 2020; 7
Kafita (10.1016/j.prp.2024.155602_bib76) 2021; 16
Lo (10.1016/j.prp.2024.155602_bib20) 2014; 14
Mahesh (10.1016/j.prp.2024.155602_bib10) 2020; 9
Liu (10.1016/j.prp.2024.155602_bib68) 2019; 10
Yang (10.1016/j.prp.2024.155602_bib72) 2020; 26
Kartal (10.1016/j.prp.2024.155602_bib5) 2022; 71
Margulis (10.1016/j.prp.2024.155602_bib19) 2014
Udegbe (10.1016/j.prp.2024.155602_bib36) 2024; 5
Resmini (10.1016/j.prp.2024.155602_bib23) 2021; 21
Klein (10.1016/j.prp.2024.155602_bib3) 2021; 18
Roth (10.1016/j.prp.2024.155602_bib28) 2021; 273
Mikdadi (10.1016/j.prp.2024.155602_bib42) 2022; 33
Lv (10.1016/j.prp.2024.155602_bib48) 2017
Zhang (10.1016/j.prp.2024.155602_bib24) 2021; 41
Chi (10.1016/j.prp.2024.155602_bib31) 2023; 13
Khalili-Tanha (10.1016/j.prp.2024.155602_bib26) 2023; 17
Ko (10.1016/j.prp.2024.155602_bib71) 2018; 78
Bagheri (10.1016/j.prp.2024.155602_bib9) 2019; 123
Hansmann (10.1016/j.prp.2024.155602_bib43) 2023; 14
Yan (10.1016/j.prp.2024.155602_bib75) 2020; 11
Hsieh (10.1016/j.prp.2024.155602_bib17) 2011; 149
Oh (10.1016/j.prp.2024.155602_bib15) 2020; 33
Schelter (10.1016/j.prp.2024.155602_bib33) 2015
Deng (10.1016/j.prp.2024.155602_bib59) 2020; 99
Schperberg (10.1016/j.prp.2024.155602_bib38) 2020; 147
Najafabadi (10.1016/j.prp.2024.155602_bib21) 2015; 2
Majumder (10.1016/j.prp.2024.155602_bib62) 2021; 27
10.1016/j.prp.2024.155602_bib41
Peng (10.1016/j.prp.2024.155602_bib54) 2020; 12
Yao (10.1016/j.prp.2024.155602_bib70) 2017; 39
Iwatate (10.1016/j.prp.2024.155602_bib52) 2020; 123
Kwon (10.1016/j.prp.2024.155602_bib50) 2015; 16
References_xml – volume: 10
  year: 2020
  ident: bib40
  article-title: Reporting quality of studies using machine learning models for medical diagnosis: a systematic review
  publication-title: BMJ Open
– volume: 273
  start-page: e273
  year: 2021
  end-page: e275
  ident: bib28
  article-title: Noninvasive discrimination of low and high-risk pancreatic intraductal papillary mucinous neoplasms
  publication-title: Ann. Surg.
– volume: 18
  start-page: 493
  year: 2021
  end-page: 502
  ident: bib3
  article-title: Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 7
  start-page: 80033
  year: 2016
  ident: bib63
  article-title: New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer
  publication-title: Oncotarget
– volume: 122
  start-page: 692
  year: 2020
  end-page: 696
  ident: bib18
  article-title: Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients
  publication-title: Br. J. Cancer
– volume: 24
  start-page: 7781
  year: 2023
  ident: bib44
  article-title: Machine learning models for the identification of prognostic and predictive cancer biomarkers: a systematic review
  publication-title: Int. J. Mol. Sci.
– volume: 13
  year: 2019
  ident: bib45
  article-title: RNA-binding motif protein 6 is a candidate serum biomarker for pancreatic cancer
  publication-title: Proteom. Clin. Appl.
– volume: 147
  start-page: 2537
  year: 2020
  end-page: 2549
  ident: bib38
  article-title: Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials
  publication-title: Int. J. Cancer
– volume: 11
  year: 2020
  ident: bib56
  article-title: A transcriptomics-based meta-analysis combined with machine learning identifies a secretory biomarker panel for diagnosis of pancreatic adenocarcinoma
  publication-title: Front. Genet.
– volume: 41
  start-page: 368
  year: 2021
  end-page: 374
  ident: bib24
  article-title: Distinguishing rectal cancer from colon cancer based on the support vector machine method and RNA-sequencing data
  publication-title: Curr. Med. Sci.
– volume: 12
  start-page: 1534
  year: 2020
  ident: bib54
  article-title: Systemic proteome alterations linked to early stage pancreatic cancer in diabetic patients
  publication-title: Cancers
– volume: 26
  start-page: 3248
  year: 2020
  end-page: 3258
  ident: bib72
  article-title: A multianalyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma
  publication-title: Clin. Cancer Res
– volume: 10
  start-page: 1305
  year: 2016
  end-page: 1316
  ident: bib46
  article-title: Plasma protein profiling in a stage defined pancreatic cancer cohort–implications for early diagnosis
  publication-title: Mol. Oncol.
– start-page: 359
  year: 2014
  end-page: 368
  ident: bib19
  article-title: Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: the Newcastle–Ottawa scale and the RTI item bank
  publication-title: Clin. Epidemiol.
– year: 2021
  ident: bib58
  article-title: Multi-biomarker panel prediction model for diagnosis of pancreatic cancer
  publication-title: J. Hepato-Biliary-Pancreat. Sci.
– volume: 7
  year: 2021
  ident: bib79
  article-title: Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics
  publication-title: Sci. Adv.
– volume: 123
  start-page: 1253
  year: 2020
  end-page: 1261
  ident: bib74
  article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer
  publication-title: Br. J. Cancer
– volume: 12
  start-page: 1445
  year: 2021
  end-page: 1454
  ident: bib78
  article-title: Detection of Pancreatic Ductal Adenocarcinoma by A qPCR-based Normalizer-free Circulating Extracellular Vesicles RNA Signature
  publication-title: J. Cancer
– volume: 26
  start-page: 2411
  year: 2020
  end-page: 2421
  ident: bib49
  article-title: Predicted prognosis of patients with pancreatic cancer by machine learning
  publication-title: Clin. Cancer Res.
– volume: 11
  start-page: 1188
  year: 2000
  end-page: 1193
  ident: bib22
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Trans. Neural Netw.
– year: 2020
  ident: bib69
  publication-title: Use Evidential Reason. Model Biomark. Pancreat. Cancer Predict.
– volume: 43
  start-page: 851
  year: 2021
  end-page: 857
  ident: bib47
  article-title: Ensemble based biomarker identification on pancreatic ductal adenocarcinoma gene expressions
  publication-title: Int. J. Comput. Appl.
– volume: 13
  start-page: 105
  year: 2019
  end-page: 121
  ident: bib53
  article-title: Pancreatic cancer biomarker detection by two support vector strategies for recursive feature elimination
  publication-title: Biomark. Med.
– year: 2016
  ident: bib14
  article-title: Unsupervised Learning Algorithms
– volume: 17
  start-page: 1469
  year: 2023
  end-page: 1485
  ident: bib26
  article-title: Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis
  publication-title: J. Cell Commun. Signal.
– volume: 16
  year: 2021
  ident: bib64
  article-title: Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data
  publication-title: PloS One
– volume: 8
  year: 2020
  ident: bib55
  article-title: Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method
  publication-title: Front. Cell Dev. Biol.
– year: 2015
  ident: bib33
  publication-title: Chall. Mach. Learn. Model Manag.
– volume: 113
  start-page: 14330
  year: 2016
  end-page: 14335
  ident: bib35
  article-title: Evaluating the evaluation of cancer driver genes
  publication-title: Proc. Natl. Acad. Sci.
– volume: 149
  start-page: 87
  year: 2011
  end-page: 93
  ident: bib17
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
– volume: 78
  start-page: 3688
  year: 2018
  end-page: 3697
  ident: bib71
  article-title: miRNA profiling of magnetic nanopore–isolated extracellular vesicles for the diagnosis of pancreatic cancer
  publication-title: Cancer Res.
– volume: 22
  start-page: 1007
  year: 2021
  ident: bib57
  article-title: Identification of circulating serum mirnas as novel biomarkers in pancreatic cancer using a penalized algorithm
  publication-title: Int. J. Mol. Sci.
– volume: 2
  start-page: 110
  year: 2002
  end-page: 125
  ident: bib13
  article-title: Ensemble learning
  publication-title: Handb. Brain Theory Neural Netw.
– volume: 21
  start-page: 4802
  year: 2021
  ident: bib23
  article-title: Combining genetic algorithms and SVM for breast cancer diagnosis using infrared thermography
  publication-title: Sensors
– volume: 31
  start-page: 112
  year: 2023
  end-page: 125
  ident: bib29
  article-title: Early diagnosis of pancreatic cancer by machine learning methods using urine biomarker combinations
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 16
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib50
  article-title: Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer
  publication-title: BMC Genom.
– volume: 11
  start-page: eaav4772
  year: 2019
  ident: bib60
  article-title: A multimodality test to guide the management of patients with a pancreatic cyst
  publication-title: Sci. Transl. Med.
– year: 2017
  ident: bib48
  article-title: editors. Pancreatic Cancer Biomarker Detection Using Recursive Feature Elimination Based on Support Vector Machine and Large Margin Distribution Machine
  publication-title: 2017 4th International Conference on Systems and Informatics (ICSAI)
– volume: 228
  start-page: 721
  year: 2019
  end-page: 729
  ident: bib61
  article-title: Cyst fluid biosignature to predict intraductal papillary mucinous neoplasms of the pancreas with high malignant potential
  publication-title: J. Am. Coll. Surg.
– volume: 7
  start-page: 53040
  year: 2019
  end-page: 53065
  ident: bib12
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
– volume: 17
  start-page: 28
  year: 2023
  ident: bib30
  article-title: Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks
  publication-title: J. Biol. Eng.
– volume: 13
  start-page: 5611
  year: 2021
  ident: bib66
  article-title: Cancer Detection and Classification by CpG Island Hypermethylation Signatures in Plasma Cell-Free DNA
  publication-title: Cancers
– volume: 12
  year: 2021
  ident: bib67
  article-title: TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: a bioinformatics analysis and experiments validation
  publication-title: Front. Immunol.
– volume: 33
  start-page: 173
  year: 2022
  end-page: 184
  ident: bib42
  article-title: Applications of artificial intelligence (AI) in ovarian cancer, pancreatic cancer, and image biomarker discovery
  publication-title: Cancer Biomark.
– reference: Kumar P.V., Ganguly T., Gupta R., Pokkuluri K.S., Mishra A.K.V., Selvi V. ML and AI Based Healthcare Model to more Interpretable and Transparent in Medical Diagnosis.
– volume: 16
  year: 2021
  ident: bib76
  article-title: Proteogenomic analysis of pancreatic cancer subtypes
  publication-title: PLoS One
– volume: 2
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib21
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 37
  year: 2021
  ident: bib80
  article-title: Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas
  publication-title: Cell Rep.
– volume: 9
  start-page: 381
  year: 2020
  end-page: 386
  ident: bib10
  article-title: Machine learning algorithms-a review
  publication-title: Int. J. Sci. Res.
– volume: 99
  year: 2020
  ident: bib59
  article-title: A panel of 8 miRNAs as a novel diagnostic biomarker in pancreatic cancer
  publication-title: Medicine
– volume: 10
  start-page: 10
  year: 2019
  ident: bib2
  article-title: Epidemiology of pancreatic cancer: global trends, etiology and risk factors
  publication-title: World J. Oncol.
– volume: 112
  start-page: 172
  year: 2017
  ident: bib4
  article-title: A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study
  publication-title: Am. J. Gastroenterol.
– volume: 123
  start-page: 1253
  year: 2020
  end-page: 1261
  ident: bib52
  article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer
  publication-title: Br. J. Cancer
– volume: 123
  start-page: 229
  year: 2019
  end-page: 252
  ident: bib9
  article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review
  publication-title: Process Saf. Environ. Prot.
– volume: 10
  start-page: 778
  year: 2019
  ident: bib68
  article-title: DNA methylation markers for pan-cancer prediction by deep learning
  publication-title: Genes
– volume: 4
  start-page: 51
  year: 2017
  end-page: 62
  ident: bib11
  article-title: An overview of the supervised machine learning methods
  publication-title: Horiz. b
– volume: 10
  start-page: 1212
  year: 2020
  ident: bib27
  article-title: Machine learning and network analyses reveal disease subtypes of pancreatic cancer and their molecular characteristics
  publication-title: Sci. Rep.
– volume: 13
  year: 2021
  ident: bib77
  article-title: Deep learning improves pancreatic cancer diagnosis using RNA-based variants
  publication-title: Cancers
– volume: 14
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib20
  article-title: Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments
  publication-title: BMC Med. Res. Methodol.
– volume: 27
  start-page: 2523
  year: 2021
  end-page: 2532
  ident: bib62
  article-title: High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9Plasma methylated DNA biomarker for pancreatic cancer
  publication-title: Clin. Cancer Res.
– volume: 11
  start-page: 155
  year: 2019
  ident: bib6
  article-title: An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer
  publication-title: Cancers
– volume: 33
  start-page: 1060
  year: 2020
  end-page: 1070
  ident: bib15
  article-title: Discovering reinforcement learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: bib65
  article-title: Genome-wide DNA methylation profiling and identification of potential pan-cancer and tumor-specific biomarkers
  publication-title: Mol. Oncol.
– volume: 395
  start-page: 2008
  year: 2020
  end-page: 2020
  ident: bib1
  article-title: Pancreatic cancer
  publication-title: Lancet
– volume: 7
  year: 2020
  ident: bib37
  article-title: Regulatory responses to medical machine learning
  publication-title: J. Law Biosci.
– volume: 71
  start-page: 1359
  year: 2022
  end-page: 1372
  ident: bib5
  article-title: A faecal microbiota signature with high specificity for pancreatic cancer
  publication-title: Gut
– year: 2023
  ident: bib39
  article-title: editors. Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials
  publication-title: Seminars in Radiation Oncology
– volume: 8
  year: 2017
  ident: bib51
  article-title: Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material
  publication-title: Oncotarget
– volume: 14
  year: 2023
  ident: bib43
  article-title: Imaging bridges pathology and radiology
  publication-title: J. Pathol. Inform.
– volume: 7
  start-page: 41575
  year: 2016
  end-page: 41583
  ident: bib73
  article-title: Plasma microRNA panels to diagnose pancreatic cancer: results from a multicenter study
  publication-title: Oncotarget
– volume: 3
  start-page: 58
  year: 2022
  end-page: 73
  ident: bib8
  article-title: Significance of machine learning in healthcare: Features, pillars and applications
  publication-title: Int. J. Intell. Netw.
– volume: 109
  start-page: 373
  year: 2020
  end-page: 440
  ident: bib16
  article-title: A survey on semi-supervised learning
  publication-title: Mach. Learn.
– volume: 5
  start-page: 892
  year: 2024
  end-page: 902
  ident: bib36
  article-title: Machine learning in drug discovery: a critical review of applications and challenges
  publication-title: Comput. Sci. IT Res. J.
– volume: 39
  year: 2017
  ident: bib70
  article-title: A competing endogenous RNA network identifies novel mRNA, miRNA and lncRNA markers for the prognosis of diabetic pancreatic cancer
  publication-title: Tumor Biol.
– volume: 2
  start-page: 501
  year: 2022
  end-page: 519
  ident: bib34
  article-title: Significance of machine learning for detection of malicious websites on an unbalanced dataset
  publication-title: Digital
– volume: 11
  start-page: 2007
  year: 2019
  ident: bib25
  article-title: Prediction of colon cancer stages and survival period with machine learning approach
  publication-title: Cancers
– volume: 11
  start-page: 534
  year: 2020
  ident: bib75
  article-title: Identifying drug targets in pancreatic ductal adenocarcinoma through machine learning, analyzing biomolecular networks, and structural modeling
  publication-title: Front. Pharm.
– volume: 13
  year: 2023
  ident: bib31
  article-title: Proposing new early detection indicators for pancreatic cancer: combining machine learning and neural networks for serum miRNA-based diagnostic model
  publication-title: Front. Oncol.
– volume: 13
  start-page: 3091
  year: 2023
  ident: bib32
  article-title: Identifying effective biomarkers for accurate pancreatic cancer prognosis using statistical machine learning
  publication-title: Diagnostics
– volume: 20
  start-page: 1195
  year: 2020
  end-page: 1204
  ident: bib7
  article-title: A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures
  publication-title: Pancreatology
– volume: 11
  start-page: eaav4772
  issue: 501
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib60
  article-title: A multimodality test to guide the management of patients with a pancreatic cyst
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aav4772
– year: 2016
  ident: 10.1016/j.prp.2024.155602_bib14
– volume: 112
  start-page: 172
  issue: 1
  year: 2017
  ident: 10.1016/j.prp.2024.155602_bib4
  article-title: A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2016.482
– volume: 33
  start-page: 1060
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib15
  article-title: Discovering reinforcement learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  issue: 5
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib45
  article-title: RNA-binding motif protein 6 is a candidate serum biomarker for pancreatic cancer
  publication-title: Proteom. Clin. Appl.
  doi: 10.1002/prca.201900048
– volume: 11
  start-page: 1188
  issue: 5
  year: 2000
  ident: 10.1016/j.prp.2024.155602_bib22
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870050
– volume: 11
  start-page: 2007
  issue: 12
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib25
  article-title: Prediction of colon cancer stages and survival period with machine learning approach
  publication-title: Cancers
  doi: 10.3390/cancers11122007
– volume: 12
  start-page: 1534
  issue: 6
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib54
  article-title: Systemic proteome alterations linked to early stage pancreatic cancer in diabetic patients
  publication-title: Cancers
  doi: 10.3390/cancers12061534
– volume: 27
  start-page: 2523
  issue: 9
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib62
  article-title: High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9Plasma methylated DNA biomarker for pancreatic cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-0235
– volume: 37
  issue: 3
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib80
  article-title: Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109873
– volume: 22
  start-page: 1007
  issue: 3
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib57
  article-title: Identification of circulating serum mirnas as novel biomarkers in pancreatic cancer using a penalized algorithm
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22031007
– volume: 12
  start-page: 1445
  issue: 5
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib78
  article-title: Detection of Pancreatic Ductal Adenocarcinoma by A qPCR-based Normalizer-free Circulating Extracellular Vesicles RNA Signature
  publication-title: J. Cancer
  doi: 10.7150/jca.50716
– volume: 13
  start-page: 105
  issue: 02
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib53
  article-title: Pancreatic cancer biomarker detection by two support vector strategies for recursive feature elimination
  publication-title: Biomark. Med.
  doi: 10.2217/bmm-2018-0273
– volume: 13
  start-page: 3091
  issue: 19
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib32
  article-title: Identifying effective biomarkers for accurate pancreatic cancer prognosis using statistical machine learning
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13193091
– volume: 122
  start-page: 692
  issue: 5
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib18
  article-title: Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0694-0
– volume: 147
  start-page: 2537
  issue: 9
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib38
  article-title: Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.33240
– volume: 13
  issue: 11
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib77
  article-title: Deep learning improves pancreatic cancer diagnosis using RNA-based variants
  publication-title: Cancers
  doi: 10.3390/cancers13112654
– volume: 11
  start-page: 155
  issue: 2
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib6
  article-title: An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer
  publication-title: Cancers
  doi: 10.3390/cancers11020155
– volume: 3
  start-page: 58
  year: 2022
  ident: 10.1016/j.prp.2024.155602_bib8
  article-title: Significance of machine learning in healthcare: Features, pillars and applications
  publication-title: Int. J. Intell. Netw.
– volume: 26
  start-page: 2411
  issue: 10
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib49
  article-title: Predicted prognosis of patients with pancreatic cancer by machine learning
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-1247
– volume: 14
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib43
  article-title: Imaging bridges pathology and radiology
  publication-title: J. Pathol. Inform.
  doi: 10.1016/j.jpi.2023.100298
– volume: 13
  start-page: 5611
  issue: 22
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib66
  article-title: Cancer Detection and Classification by CpG Island Hypermethylation Signatures in Plasma Cell-Free DNA
  publication-title: Cancers
  doi: 10.3390/cancers13225611
– volume: 8
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib55
  article-title: Early diagnosis of pancreatic ductal adenocarcinoma by combining relative expression orderings with machine-learning method
  publication-title: Front. Cell Dev. Biol.
– volume: 2
  start-page: 501
  issue: 4
  year: 2022
  ident: 10.1016/j.prp.2024.155602_bib34
  article-title: Significance of machine learning for detection of malicious websites on an unbalanced dataset
  publication-title: Digital
  doi: 10.3390/digital2040027
– volume: 39
  issue: 6
  year: 2017
  ident: 10.1016/j.prp.2024.155602_bib70
  article-title: A competing endogenous RNA network identifies novel mRNA, miRNA and lncRNA markers for the prognosis of diabetic pancreatic cancer
  publication-title: Tumor Biol.
  doi: 10.1177/1010428317707882
– volume: 78
  start-page: 3688
  issue: 13
  year: 2018
  ident: 10.1016/j.prp.2024.155602_bib71
  article-title: miRNA profiling of magnetic nanopore–isolated extracellular vesicles for the diagnosis of pancreatic cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-3703
– volume: 10
  start-page: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib2
  article-title: Epidemiology of pancreatic cancer: global trends, etiology and risk factors
  publication-title: World J. Oncol.
  doi: 10.14740/wjon1166
– volume: 16
  issue: 9
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib76
  article-title: Proteogenomic analysis of pancreatic cancer subtypes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0257084
– volume: 228
  start-page: 721
  issue: 5
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib61
  article-title: Cyst fluid biosignature to predict intraductal papillary mucinous neoplasms of the pancreas with high malignant potential
  publication-title: J. Am. Coll. Surg.
  doi: 10.1016/j.jamcollsurg.2019.02.040
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.prp.2024.155602_bib21
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– year: 2015
  ident: 10.1016/j.prp.2024.155602_bib33
  publication-title: Chall. Mach. Learn. Model Manag.
– volume: 43
  start-page: 851
  issue: 9
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib47
  article-title: Ensemble based biomarker identification on pancreatic ductal adenocarcinoma gene expressions
  publication-title: Int. J. Comput. Appl.
– volume: 109
  start-page: 373
  issue: 2
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib16
  article-title: A survey on semi-supervised learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05855-6
– year: 2022
  ident: 10.1016/j.prp.2024.155602_bib65
  article-title: Genome-wide DNA methylation profiling and identification of potential pan-cancer and tumor-specific biomarkers
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.13176
– volume: 2
  start-page: 110
  issue: 1
  year: 2002
  ident: 10.1016/j.prp.2024.155602_bib13
  article-title: Ensemble learning
  publication-title: Handb. Brain Theory Neural Netw.
– volume: 10
  start-page: 778
  issue: 10
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib68
  article-title: DNA methylation markers for pan-cancer prediction by deep learning
  publication-title: Genes
  doi: 10.3390/genes10100778
– volume: 123
  start-page: 229
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib9
  article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.01.013
– volume: 18
  start-page: 493
  issue: 7
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib3
  article-title: Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-021-00457-x
– volume: 17
  start-page: 1469
  issue: 4
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib26
  article-title: Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis
  publication-title: J. Cell Commun. Signal.
  doi: 10.1007/s12079-023-00779-2
– ident: 10.1016/j.prp.2024.155602_bib41
– volume: 395
  start-page: 2008
  issue: 10242
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib1
  article-title: Pancreatic cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30974-0
– volume: 99
  issue: 38
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib59
  article-title: A panel of 8 miRNAs as a novel diagnostic biomarker in pancreatic cancer
  publication-title: Medicine
  doi: 10.1097/MD.0000000000022261
– volume: 4
  start-page: 51
  year: 2017
  ident: 10.1016/j.prp.2024.155602_bib11
  article-title: An overview of the supervised machine learning methods
  publication-title: Horiz. b
  doi: 10.20544/HORIZONS.B.04.1.17.P05
– volume: 13
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib31
  article-title: Proposing new early detection indicators for pancreatic cancer: combining machine learning and neural networks for serum miRNA-based diagnostic model
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2023.1244578
– volume: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib37
  article-title: Regulatory responses to medical machine learning
  publication-title: J. Law Biosci.
  doi: 10.1093/jlb/lsaa002
– year: 2020
  ident: 10.1016/j.prp.2024.155602_bib69
  publication-title: Use Evidential Reason. Model Biomark. Pancreat. Cancer Predict.
– volume: 33
  start-page: 173
  issue: 2
  year: 2022
  ident: 10.1016/j.prp.2024.155602_bib42
  article-title: Applications of artificial intelligence (AI) in ovarian cancer, pancreatic cancer, and image biomarker discovery
  publication-title: Cancer Biomark.
  doi: 10.3233/CBM-210301
– volume: 11
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib56
  article-title: A transcriptomics-based meta-analysis combined with machine learning identifies a secretory biomarker panel for diagnosis of pancreatic adenocarcinoma
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.572284
– volume: 10
  start-page: 1212
  issue: 1
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib27
  article-title: Machine learning and network analyses reveal disease subtypes of pancreatic cancer and their molecular characteristics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58290-2
– year: 2023
  ident: 10.1016/j.prp.2024.155602_bib39
  article-title: editors. Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials
– volume: 273
  start-page: e273
  issue: 6
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib28
  article-title: Noninvasive discrimination of low and high-risk pancreatic intraductal papillary mucinous neoplasms
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000004066
– volume: 11
  start-page: 534
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib75
  article-title: Identifying drug targets in pancreatic ductal adenocarcinoma through machine learning, analyzing biomolecular networks, and structural modeling
  publication-title: Front. Pharm.
  doi: 10.3389/fphar.2020.00534
– volume: 8
  issue: 64
  year: 2017
  ident: 10.1016/j.prp.2024.155602_bib51
  article-title: Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22601
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib64
  article-title: Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data
  publication-title: PloS One
  doi: 10.1371/journal.pone.0251876
– start-page: 359
  year: 2014
  ident: 10.1016/j.prp.2024.155602_bib19
  article-title: Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: the Newcastle–Ottawa scale and the RTI item bank
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S66677
– volume: 17
  start-page: 28
  issue: 1
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib30
  article-title: Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-023-00340-0
– volume: 16
  start-page: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.prp.2024.155602_bib50
  article-title: Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer
  publication-title: BMC Genom.
– volume: 7
  start-page: 80033
  issue: 48
  year: 2016
  ident: 10.1016/j.prp.2024.155602_bib63
  article-title: New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12406
– volume: 10
  start-page: 1305
  issue: 8
  year: 2016
  ident: 10.1016/j.prp.2024.155602_bib46
  article-title: Plasma protein profiling in a stage defined pancreatic cancer cohort–implications for early diagnosis
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2016.07.001
– volume: 26
  start-page: 3248
  issue: 13
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib72
  article-title: A multianalyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma
  publication-title: Clin. Cancer Res
  doi: 10.1158/1078-0432.CCR-19-3313
– volume: 31
  start-page: 112
  issue: 1
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib29
  article-title: Early diagnosis of pancreatic cancer by machine learning methods using urine biomarker combinations
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.3974
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.prp.2024.155602_bib20
  article-title: Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-45
– volume: 123
  start-page: 1253
  issue: 8
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib74
  article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-020-0997-1
– volume: 10
  issue: 3
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib40
  article-title: Reporting quality of studies using machine learning models for medical diagnosis: a systematic review
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-034568
– volume: 24
  start-page: 7781
  issue: 9
  year: 2023
  ident: 10.1016/j.prp.2024.155602_bib44
  article-title: Machine learning models for the identification of prognostic and predictive cancer biomarkers: a systematic review
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24097781
– volume: 113
  start-page: 14330
  issue: 50
  year: 2016
  ident: 10.1016/j.prp.2024.155602_bib35
  article-title: Evaluating the evaluation of cancer driver genes
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1616440113
– volume: 7
  start-page: 41575
  issue: 27
  year: 2016
  ident: 10.1016/j.prp.2024.155602_bib73
  article-title: Plasma microRNA panels to diagnose pancreatic cancer: results from a multicenter study
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9491
– volume: 5
  start-page: 892
  issue: 4
  year: 2024
  ident: 10.1016/j.prp.2024.155602_bib36
  article-title: Machine learning in drug discovery: a critical review of applications and challenges
  publication-title: Comput. Sci. IT Res. J.
  doi: 10.51594/csitrj.v5i4.1048
– year: 2021
  ident: 10.1016/j.prp.2024.155602_bib58
  article-title: Multi-biomarker panel prediction model for diagnosis of pancreatic cancer
  publication-title: J. Hepato-Biliary-Pancreat. Sci.
  doi: 10.14701/ahbps.BP-BEST-OP-2
– volume: 149
  start-page: 87
  issue: 1
  year: 2011
  ident: 10.1016/j.prp.2024.155602_bib17
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
  doi: 10.1016/j.surg.2010.03.023
– volume: 9
  start-page: 381
  issue: 1
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib10
  article-title: Machine learning algorithms-a review
  publication-title: Int. J. Sci. Res.
– volume: 21
  start-page: 4802
  issue: 14
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib23
  article-title: Combining genetic algorithms and SVM for breast cancer diagnosis using infrared thermography
  publication-title: Sensors
  doi: 10.3390/s21144802
– volume: 123
  start-page: 1253
  issue: 8
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib52
  article-title: Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-020-0997-1
– volume: 7
  issue: 52
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib79
  article-title: Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh2724
– volume: 7
  start-page: 53040
  year: 2019
  ident: 10.1016/j.prp.2024.155602_bib12
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– volume: 20
  start-page: 1195
  issue: 6
  year: 2020
  ident: 10.1016/j.prp.2024.155602_bib7
  article-title: A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures
  publication-title: Pancreatology
  doi: 10.1016/j.pan.2020.07.399
– year: 2017
  ident: 10.1016/j.prp.2024.155602_bib48
  article-title: editors. Pancreatic Cancer Biomarker Detection Using Recursive Feature Elimination Based on Support Vector Machine and Large Margin Distribution Machine
– volume: 71
  start-page: 1359
  issue: 7
  year: 2022
  ident: 10.1016/j.prp.2024.155602_bib5
  article-title: A faecal microbiota signature with high specificity for pancreatic cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2021-324755
– volume: 41
  start-page: 368
  issue: 2
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib24
  article-title: Distinguishing rectal cancer from colon cancer based on the support vector machine method and RNA-sequencing data
  publication-title: Curr. Med. Sci.
  doi: 10.1007/s11596-021-2356-8
– volume: 12
  year: 2021
  ident: 10.1016/j.prp.2024.155602_bib67
  article-title: TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: a bioinformatics analysis and experiments validation
  publication-title: Front. Immunol.
SSID ssj0007041
Score 2.406775
SecondaryResourceType review_article
Snippet Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 155602
SubjectTerms Algorithms
Biomarkers
Biomarkers, Tumor - analysis
Diagnosis
Humans
Machine Learning
Multiomics
Pancreatic cancer
Pancreatic Neoplasms - diagnosis
Prognosis
Title Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration
URI https://dx.doi.org/10.1016/j.prp.2024.155602
https://www.ncbi.nlm.nih.gov/pubmed/39357184
https://www.proquest.com/docview/3112526338
Volume 263
WOSCitedRecordID wos001330228500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1618-0631
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007041
  issn: 0344-0338
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOsZexq5ddika7GnGw7Fky34Mo92tLWVkI29GkpXaWWKXOCld2R_cv9qRJdttR8r6sBcTjC2Evy_nHEnfOQehN2kYRlGsiDv1-dSlQ-m5PODEpYwNg1QOpajVhN8P2NFRNJnEx73e7yYX5mzOiiI6P49P_yvUcA_A1qmzt4C7HRRuwG8AHa4AO1z_CfjDWh6pmn4QJw6fn5TLfJUtTDlmnXCvNTnLyslTqxXqFIdgHEwcKbUeTOr-4UaMl1fOut5XqCWIrk5mrhytL20rTjQI21D3mK-yNhXG1hTKbF0Ck5nVHfasLwTPTHcpZ7TUNucL1_3GWneQwXJhnrtjXpgDqg8ZvwDX1u5lf-UzrjX4tUfhFV_knbogK2ccuJy5B-rnnP8oy7qPsbMPUfbCjmC3PXxq8_8660godT1iSsM0pty3xtIYYwiVwjqd-28_YbYsZuCldM1Sn77rnr1ak_uar2wVjI04bpbAEIkeIjFDbKFtnwVx1Efbo097k89tWMC8uo1qO-_miL0WG16bx6YgadMiqA6Gxg_QfbuKwSPDvoeop4pH6O6h1Wk8Rr8sCXFDQtyREAMFcEdCfJWEGEiIOxJiQ0LckhDXJMSXSIg1CfElEj5B3_b3xu8_urbPhytJQFYu8z2RpoT7MQ-V8KgWJnghn0rwF_E0VUqIUPqeFJ6UPlG6YBETTCjK_ShUQUieon5RFuoZwnJKwSaF1BN0SkXI4nSoyJCkisEyhgk5QF7zYRNpi-DrXizzZCOgA_S2feXUVIC56WHaoJXYENaEpgkw76bXXjfIJmDe9ZkdL1S5rhIC66EAaE2iAdoxkLez0Fn1EFrS57eZ4Qt0r_s7vUT91XKtXqE78myVV8tdtMUm0a6l7h-4Tdlg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+and+biomarkers+identification+for+pancreatic+cancer+diagnosis+using+multi-omics+data+integration&rft.jtitle=Pathology%2C+research+and+practice&rft.au=Rouzbahani%2C+Arian+Karimi&rft.au=Khalili-Tanha%2C+Ghazaleh&rft.au=Rajabloo%2C+Yasamin&rft.au=Khojasteh-Leylakoohi%2C+Fatemeh&rft.date=2024-11-01&rft.issn=0344-0338&rft.volume=263&rft.spage=155602&rft_id=info:doi/10.1016%2Fj.prp.2024.155602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prp_2024_155602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0344-0338&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0344-0338&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0344-0338&client=summon