Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis
This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is writt...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 77; číslo 1; s. 307 - 334 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2020
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is written into a linear programming problem of infinite-dimension (weak formulation). Thanks to Interval arithmetic, we provide a relaxation of this infinite-dimensional linear programming problem by a finite dimensional linear programming problem. A proof that the optimal value of the finite dimensional linear programming problem is a lower bound to the optimal value of the control problem is given. Moreover, according to the fineness of the discretization and the size of the chosen test function family, obtained optimal values of each finite dimensional linear programming problem form a sequence of lower bounds which converges to the optimal value of the initial optimal control problem. Examples will illustrate the principle of the methodology. |
|---|---|
| AbstractList | This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is written into a linear programming problem of infinite-dimension (weak formulation). Thanks to Interval arithmetic, we provide a relaxation of this infinite-dimensional linear programming problem by a finite dimensional linear programming problem. A proof that the optimal value of the finite dimensional linear programming problem is a lower bound to the optimal value of the control problem is given. Moreover, according to the fineness of the discretization and the size of the chosen test function family, obtained optimal values of each finite dimensional linear programming problem form a sequence of lower bounds which converges to the optimal value of the initial optimal control problem. Examples will illustrate the principle of the methodology. |
| Author | Lhommeau, Mehdi Lagrange, Sébastien Delanoue, Nicolas |
| Author_xml | – sequence: 1 givenname: Nicolas orcidid: 0000-0001-6927-6281 surname: Delanoue fullname: Delanoue, Nicolas email: nicolas.delanoue@univ-angers.fr organization: LARIS, Université d’Angers – sequence: 2 givenname: Mehdi surname: Lhommeau fullname: Lhommeau, Mehdi organization: LARIS, Université d’Angers – sequence: 3 givenname: Sébastien surname: Lagrange fullname: Lagrange, Sébastien organization: LARIS, Université d’Angers |
| BackLink | https://univ-angers.hal.science/hal-02863203$$DView record in HAL |
| BookMark | eNp9kEFv3CAQhVGVSN0k_QM9IfXUg5sBbAy9RVHTRFq1l_ZMJ3jcEHlhC3ak_PuycZVKOUQcQKP3vXm8E3YUUyTG3gv4JAD68yKgM7YBCQ2AsKYxb9hGdL1qpLHtEduAlbrRAOotOynlHgBsr-SG_fqW4hQiYeZpP4cdTtynOOc0febI47KjHHwdFn9HO-K3WGjgKfLk_bLHOdTnjrAsmQrHOPAQZ8oPFcCI02MJ5YwdjzgVevfvPmU_r778uLxutt-_3lxebBuvOjU3mnoSQ6eVHT3oVg8dSdv51qDBWy-tUGhrZCn7sev1MIpB1kOo0Y-2RVCn7OPqe4eT2-f6k_zoEgZ3fbF1hxlIo5UE9SCq9sOq3ef0Z6Eyu_u05Bq4ONlKZTX07cFRriqfUymZxmdbAe7Qultbr87gnlp3pkLmBeTD_NTTnDFMr6NqRUvdE39T_p_qFeovDgaY8A |
| CitedBy_id | crossref_primary_10_1109_TAES_2024_3404915 crossref_primary_10_1016_j_engappai_2024_109052 |
| Cites_doi | 10.1137/040616802 10.1137/1030153 10.1093/imamci/17.2.167 10.1073/pnas.38.8.716 10.1090/S0002-9947-1983-0690039-8 10.1016/S0362-546X(00)85016-6 10.1137/1.9781611973051 10.1090/gsm/058 10.1109/CDC.2008.4739136 10.1090/S0025-5718-1984-0744921-8 10.1007/s10589-015-9794-9 10.1137/1.9780898718577 10.1137/S1052623497315768 10.1007/s00245-014-9257-1 10.1137/070685051 10.1137/0331024 10.1007/978-1-4471-4820-3 10.1090/S0002-9947-1984-0732102-X 10.1090/S0273-0979-1992-00266-5 10.1137/060655286 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC |
| DOI | 10.1007/s10589-020-00198-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 334 |
| ExternalDocumentID | oai:HAL:hal-02863203v1 10_1007_s10589_020_00198_8 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 1XC |
| ID | FETCH-LOGICAL-c353t-6e7e1d5639fc0646d5e295c48a8abc2913a9097227f576df1d2d2dea6acf94a03 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Tue Oct 14 20:35:56 EDT 2025 Wed Nov 26 14:42:57 EST 2025 Sat Nov 29 01:51:29 EST 2025 Tue Nov 18 20:55:33 EST 2025 Fri Feb 21 02:30:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Nonlinear optimal control Interval arithmetic Continuous programming Optimization |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-6e7e1d5639fc0646d5e295c48a8abc2913a9097227f576df1d2d2dea6acf94a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6927-6281 0000-0002-9658-7891 |
| PQID | 2423960740 |
| PQPubID | 30811 |
| PageCount | 28 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02863203v1 proquest_journals_2423960740 crossref_primary_10_1007_s10589_020_00198_8 crossref_citationtrail_10_1007_s10589_020_00198_8 springer_journals_10_1007_s10589_020_00198_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | The gnu multiple precision arithmetic library. https://gmplib.org Hernández-HernándezDHernández-LermaOTaksarMThe linear programming approach to deterministic optimal control problemsAppl. Math.1996241173314049810871.49005 CrandallMGLionsPLTwo approximations of solutions of Hamilton–Jacobi equationsMath. Comput.19844316711974492110.1090/S0025-5718-1984-0744921-8 High performance computing cluster of leria.: Slurm/debian cluster of 27 nodes(700 logical CPU, 2 nvidia GPU tesla k20m, 1 nvidia P100 GPU), 120TB of beegfs scratch storage (2018) CrandallMGIshiiHLionsPLUser’s guide to viscosity solutions of second order partial differential equations.Bull. Am. Math. Soc. New Ser.1992271167111869910.1090/S0273-0979-1992-00266-50755.35015 Filib++ interval library. http://www2.math.uni-wuppertal.de/~xsc/software/filib.html JaulinLKiefferMDidritOWalterEApplied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics.2012LondonSpringer1023.65037 GaitsgoryVRossomakhineSLinear programming approach to deterministic long run average problems of optimal controlSIAM J. Control Optim.200644620062037224817310.1137/0406168021109.93017 GaitsgoryVRossomakhineSAveraging and linear programming in some singularly perturbed problems of optimal controlAppl. Math. Optim.2015712195276332358910.1007/s00245-014-9257-11317.49042 ClarkeFFunctional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.2013LondonSpringer10.1007/978-1-4471-4820-3 LasserreJMoments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series2010LondonImperial College Press WangSGaoFTeoKAn upwind finite-difference method for the approximation of viscosity solutions to Hamilton–Jacobi–Bellman equationsIMA J. Math. Control Inf.2000172167178176927410.1093/imamci/17.2.167 RudinWReal and Complex Analysis19873New YorkMcGraw-Hill Book Co.0925.00005 JungeOOsingaHMA set oriented approach to global optimal controlESAIM: Control Optim. Calc. Var.200410225927020834871072.49014 Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in Economic and Mathematical Systems. Springer, Berlin (1993) CrandallMGLionsPLViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114269003910.1090/S0002-9947-1983-0690039-8 Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2014). https://hal.inria.fr/hal-00916055 Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer, New York (1993) LasserreJBHenrionDPrieurCTrélatENonlinear optimal control via occupation measures and lmi-relaxationsSIAM J. Control Optim.200847416431666242132410.1137/0706850511188.90193 Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control synthesis via occupation measures. In: 47th IEEE Conference on Decision and Control, pp. 4749–4754 (2008). https://doi.org/10.1109/CDC.2008.4739136 VillaniCTopics in Optimal Transportation: Graduate Studies in Mathematics2003ProvidenceAmerican Mathematical Society10.1090/gsm/058 CrandallMGEvansLCLionsPLSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1984282248750273210210.1090/S0002-9947-1984-0732102-X Glpk: Gnu linear programming kit. http://www.gnu.org/software/glpk AkianMGaubertSLakhouaAThe max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysisSIAM J. Control Optim.2008472817848238586410.1137/0606552861157.49034 Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics (2010). https://doi.org/10.1137/1.9780898718577 FalconeMNumerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations1997BaselBirkhäuser NeumaierAInterval Methods for Systems of Equations1990CambridgeCambridge University Press, Cambridge Middle East Library0715.65030 Hernández-LermaOLasserreJBApproximation schemes for infinite linear programsSIAM J. Optim.199884973988164128210.1137/S10526234973157680912.90219 RubioJControl and Optimization: The Linear Treatment of Nonlinear Problems1986ManchesterManchester University Press1095.49500 HuangCSWangSTeoKSolving Hamilton–Jacobi–Bellman equations by a modified method of characteristicsNonlinear Anal. Theory Methods Appl.2000401–8279293176841310.1016/S0362-546X(00)85016-6 VinterRConvex duality and nonlinear optimal controlSIAM J. Control Optim.1993312518538120598710.1137/03310240781.49012 Evans, L.: An Introduction to Mathematical Optimal Control Theory, version 0.2. http://math.berkeley.edu/~evans MooreRInterval Analysis. Prentice-Hall Series in Automatic Computation1966Upper Saddle RiverPrentice-Hall DelanoueNLhommeauMLucidarmePNumerical enclosures of the optimal cost of the kantorovitch’s mass transportation problemComput. Optim. Appl.2015111910.1007/s10589-015-9794-91364.90211 BalderEControl and optimisation: the linear treatment of nonlinear problems (J. E. Rubio)SIAM Rev.198830466366310.1137/1030153 BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci.19523887167195085610.1073/pnas.38.8.716 N Delanoue (198_CR11) 2015; 1 MG Crandall (198_CR8) 1992; 27 R Moore (198_CR30) 1966 MG Crandall (198_CR10) 1984; 43 C Villani (198_CR34) 2003 R Vinter (198_CR35) 1993; 31 M Akian (198_CR2) 2008; 47 O Junge (198_CR27) 2004; 10 A Neumaier (198_CR31) 1990 W Rudin (198_CR33) 1987 198_CR12 E Balder (198_CR3) 1988; 30 198_CR19 198_CR5 198_CR18 198_CR15 198_CR1 198_CR14 CS Huang (198_CR25) 2000; 40 F Clarke (198_CR6) 2013 V Gaitsgory (198_CR17) 2015; 71 J Lasserre (198_CR28) 2010 MG Crandall (198_CR7) 1984; 282 V Gaitsgory (198_CR16) 2006; 44 J Rubio (198_CR32) 1986 JB Lasserre (198_CR29) 2008; 47 L Jaulin (198_CR26) 2012 M Falcone (198_CR13) 1997 R Bellman (198_CR4) 1952; 38 198_CR22 O Hernández-Lerma (198_CR24) 1998; 8 198_CR20 198_CR21 S Wang (198_CR36) 2000; 17 MG Crandall (198_CR9) 1983; 277 D Hernández-Hernández (198_CR23) 1996; 24 |
| References_xml | – reference: CrandallMGIshiiHLionsPLUser’s guide to viscosity solutions of second order partial differential equations.Bull. Am. Math. Soc. New Ser.1992271167111869910.1090/S0273-0979-1992-00266-50755.35015 – reference: DelanoueNLhommeauMLucidarmePNumerical enclosures of the optimal cost of the kantorovitch’s mass transportation problemComput. Optim. Appl.2015111910.1007/s10589-015-9794-91364.90211 – reference: Glpk: Gnu linear programming kit. http://www.gnu.org/software/glpk/ – reference: HuangCSWangSTeoKSolving Hamilton–Jacobi–Bellman equations by a modified method of characteristicsNonlinear Anal. Theory Methods Appl.2000401–8279293176841310.1016/S0362-546X(00)85016-6 – reference: VinterRConvex duality and nonlinear optimal controlSIAM J. Control Optim.1993312518538120598710.1137/03310240781.49012 – reference: CrandallMGLionsPLTwo approximations of solutions of Hamilton–Jacobi equationsMath. Comput.19844316711974492110.1090/S0025-5718-1984-0744921-8 – reference: NeumaierAInterval Methods for Systems of Equations1990CambridgeCambridge University Press, Cambridge Middle East Library0715.65030 – reference: RubioJControl and Optimization: The Linear Treatment of Nonlinear Problems1986ManchesterManchester University Press1095.49500 – reference: The gnu multiple precision arithmetic library. https://gmplib.org/ – reference: GaitsgoryVRossomakhineSAveraging and linear programming in some singularly perturbed problems of optimal controlAppl. Math. Optim.2015712195276332358910.1007/s00245-014-9257-11317.49042 – reference: MooreRInterval Analysis. Prentice-Hall Series in Automatic Computation1966Upper Saddle RiverPrentice-Hall – reference: RudinWReal and Complex Analysis19873New YorkMcGraw-Hill Book Co.0925.00005 – reference: VillaniCTopics in Optimal Transportation: Graduate Studies in Mathematics2003ProvidenceAmerican Mathematical Society10.1090/gsm/058 – reference: AkianMGaubertSLakhouaAThe max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysisSIAM J. Control Optim.2008472817848238586410.1137/0606552861157.49034 – reference: LasserreJBHenrionDPrieurCTrélatENonlinear optimal control via occupation measures and lmi-relaxationsSIAM J. Control Optim.200847416431666242132410.1137/0706850511188.90193 – reference: High performance computing cluster of leria.: Slurm/debian cluster of 27 nodes(700 logical CPU, 2 nvidia GPU tesla k20m, 1 nvidia P100 GPU), 120TB of beegfs scratch storage (2018) – reference: ClarkeFFunctional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.2013LondonSpringer10.1007/978-1-4471-4820-3 – reference: FalconeMNumerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations1997BaselBirkhäuser – reference: Evans, L.: An Introduction to Mathematical Optimal Control Theory, version 0.2. http://math.berkeley.edu/~evans/ – reference: WangSGaoFTeoKAn upwind finite-difference method for the approximation of viscosity solutions to Hamilton–Jacobi–Bellman equationsIMA J. Math. Control Inf.2000172167178176927410.1093/imamci/17.2.167 – reference: BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci.19523887167195085610.1073/pnas.38.8.716 – reference: Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer, New York (1993) – reference: GaitsgoryVRossomakhineSLinear programming approach to deterministic long run average problems of optimal controlSIAM J. Control Optim.200644620062037224817310.1137/0406168021109.93017 – reference: JungeOOsingaHMA set oriented approach to global optimal controlESAIM: Control Optim. Calc. Var.200410225927020834871072.49014 – reference: Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in Economic and Mathematical Systems. Springer, Berlin (1993) – reference: JaulinLKiefferMDidritOWalterEApplied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics.2012LondonSpringer1023.65037 – reference: Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics (2010). https://doi.org/10.1137/1.9780898718577 – reference: Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control synthesis via occupation measures. In: 47th IEEE Conference on Decision and Control, pp. 4749–4754 (2008). https://doi.org/10.1109/CDC.2008.4739136 – reference: Hernández-HernándezDHernández-LermaOTaksarMThe linear programming approach to deterministic optimal control problemsAppl. Math.1996241173314049810871.49005 – reference: Hernández-LermaOLasserreJBApproximation schemes for infinite linear programsSIAM J. Optim.199884973988164128210.1137/S10526234973157680912.90219 – reference: BalderEControl and optimisation: the linear treatment of nonlinear problems (J. E. Rubio)SIAM Rev.198830466366310.1137/1030153 – reference: Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2014). https://hal.inria.fr/hal-00916055 – reference: CrandallMGEvansLCLionsPLSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1984282248750273210210.1090/S0002-9947-1984-0732102-X – reference: LasserreJMoments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series2010LondonImperial College Press – reference: CrandallMGLionsPLViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114269003910.1090/S0002-9947-1983-0690039-8 – reference: Filib++ interval library. http://www2.math.uni-wuppertal.de/~xsc/software/filib.html – volume-title: Interval Analysis. Prentice-Hall Series in Automatic Computation year: 1966 ident: 198_CR30 – volume: 44 start-page: 2006 issue: 6 year: 2006 ident: 198_CR16 publication-title: SIAM J. Control Optim. doi: 10.1137/040616802 – volume: 30 start-page: 663 issue: 4 year: 1988 ident: 198_CR3 publication-title: SIAM Rev. doi: 10.1137/1030153 – ident: 198_CR12 – volume: 17 start-page: 167 issue: 2 year: 2000 ident: 198_CR36 publication-title: IMA J. Math. Control Inf. doi: 10.1093/imamci/17.2.167 – ident: 198_CR18 – ident: 198_CR20 – volume: 38 start-page: 716 issue: 8 year: 1952 ident: 198_CR4 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.38.8.716 – volume-title: Numerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations year: 1997 ident: 198_CR13 – volume-title: Real and Complex Analysis year: 1987 ident: 198_CR33 – volume: 277 start-page: 1 issue: 1 year: 1983 ident: 198_CR9 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1983-0690039-8 – volume: 40 start-page: 279 issue: 1–8 year: 2000 ident: 198_CR25 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/S0362-546X(00)85016-6 – volume-title: Moments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series year: 2010 ident: 198_CR28 – ident: 198_CR14 doi: 10.1137/1.9781611973051 – volume: 10 start-page: 259 issue: 2 year: 2004 ident: 198_CR27 publication-title: ESAIM: Control Optim. Calc. Var. – volume-title: Interval Methods for Systems of Equations year: 1990 ident: 198_CR31 – volume-title: Topics in Optimal Transportation: Graduate Studies in Mathematics year: 2003 ident: 198_CR34 doi: 10.1090/gsm/058 – ident: 198_CR22 doi: 10.1109/CDC.2008.4739136 – volume: 43 start-page: 1 issue: 167 year: 1984 ident: 198_CR10 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1984-0744921-8 – volume: 1 start-page: 1 year: 2015 ident: 198_CR11 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9794-9 – ident: 198_CR5 doi: 10.1137/1.9780898718577 – volume-title: Control and Optimization: The Linear Treatment of Nonlinear Problems year: 1986 ident: 198_CR32 – ident: 198_CR15 – volume: 8 start-page: 973 issue: 4 year: 1998 ident: 198_CR24 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497315768 – volume: 71 start-page: 195 issue: 2 year: 2015 ident: 198_CR17 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-014-9257-1 – ident: 198_CR19 – ident: 198_CR21 – volume: 47 start-page: 1643 issue: 4 year: 2008 ident: 198_CR29 publication-title: SIAM J. Control Optim. doi: 10.1137/070685051 – ident: 198_CR1 – volume: 31 start-page: 518 issue: 2 year: 1993 ident: 198_CR35 publication-title: SIAM J. Control Optim. doi: 10.1137/0331024 – volume: 24 start-page: 17 issue: 1 year: 1996 ident: 198_CR23 publication-title: Appl. Math. – volume-title: Functional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. year: 2013 ident: 198_CR6 doi: 10.1007/978-1-4471-4820-3 – volume: 282 start-page: 487 issue: 2 year: 1984 ident: 198_CR7 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1984-0732102-X – volume: 27 start-page: 1 issue: 1 year: 1992 ident: 198_CR8 publication-title: Bull. Am. Math. Soc. New Ser. doi: 10.1090/S0273-0979-1992-00266-5 – volume-title: Applied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics. year: 2012 ident: 198_CR26 – volume: 47 start-page: 817 issue: 2 year: 2008 ident: 198_CR2 publication-title: SIAM J. Control Optim. doi: 10.1137/060655286 |
| SSID | ssj0009732 |
| Score | 2.2670171 |
| Snippet | This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 307 |
| SubjectTerms | Convex and Discrete Geometry Fineness Interval arithmetic Linear programming Lower bounds Management Science Mathematical programming Mathematics Mathematics and Statistics Nonlinear control Operations Research Operations Research/Decision Theory Optimal control Optimization Optimization and Control Statistics |
| SummonAdditionalLinks | – databaseName: Springer Nature Link Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xdJYg3DbRJm4c3ERcPuogvvNU0TVFwu7Kr_n4nfeyuooLSU9skLck0801n5huAfYcqwTojaKpEQCMrDE1TFdI4tJEwMhKZyMpiE7LbVff3-rJOChs20e6NS7LcqSeS3WIf3sN8JjSaylRNwyyqO-ULNlxd342pdmVZlizQTFBU57xOlfl-jE_qaPrRB0NOIM0vztFS53SW_ve2y7BYY0xyXAnFCky5YhUWJpgH8exiRNc6XIV5DzkrxuY1eOhW7BlmQPq4n_RwpDqe_YgYUrxVLp5ngmax6zni1WBG-gXpj_iKSa_68TgkpsjIUxlViR1MzX-yDred05uTM1rXYaCWx_yVCiddmMWIZXKLCEZksWM6tpEyyqSW6ZAb7VmAmMzResnyMGN4oAAYm-vIBHwDZop-4TaBcOZyxXOdCm2j2Ok0MsyFlkkhU6ly1YKwWY7E1iTlvlbGczKmV_YTm-DEJuXEJtjnYNTnpaLo-LX1Hq7yqKFn1z47Pk_8NYRagrOAv4ctaDdCkNTf9DDxyBPtPRkFLThsFn18--dHbv2t-TbMs1JufCBbG2ZeB29uB-bsOwrCYLeU9Q_B4vc3 priority: 102 providerName: Springer Nature |
| Title | Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis |
| URI | https://link.springer.com/article/10.1007/s10589-020-00198-8 https://www.proquest.com/docview/2423960740 https://univ-angers.hal.science/hal-02863203 |
| Volume | 77 |
| WOSCitedRecordID | wos000539379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xLQd64I1YKCsLcQOL2E784IJK1aoSdLVqeRQuwbEdUambtLvb_n7GiXe3INELijRSEtuJMhPP2P78DcCrgC7BBStppWVGcyctrSrNaMFcLq3KpZe-SzahxmN9cmImacJtnmCVyz6x66h96-Ic-dvo9zHaVnn2_vyCxqxRcXU1pdAYwCZGNixCug75ZE26q7oEZZnhkqJjF2nTTNo6V0SwEI_7qnHgTfUfjmnwK8Iir8Wcfy2Tdt5n_97_vvd9uJviTrLTG8oDuBWah7B1jY3wEfwc97QZdkZa7EimWDwB2d8RS5rLfm3njOB4OEwDif7Pk7Yh7YqomEz7Gcc5sY0npx2cEivYRHzyGL7s733ePaApAQN1ohALKoMKzBcYxNQOQxfpi8BN4XJtta0cN0xYE-l_uKpx2OJr5jkeqHnrapPbTDyBjaZtwlMggodai9pU0ri8CKbKLQ_McSVVpXSth8CWX790iZ08Jsk4K9e8ylFjJWqs7DRWYp3XqzrnPTfHjaVfolJXBSOt9sHOpzJewxhLCp6JKzaE7aUWy_Qzz8u1CofwZmkH69v_fuSzm1t7Dnd4Z4ARsbYNG4vZZXgBt93V4nQ-G8FAffs-gs0Pe-PJEZ59VBTlYbY76ow8SnWMclL8QHl0_PU3Qwz_pA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQk4lLdYWsBCcAKrie3YMRJCFVBt1WXVQ5F6cx3bEZW6SdndFvGn-hs7zmO3INFbDyi3xHZk-_PM2J75BuBNQJXggpW0yGVChZOWFkWe0ix1QlolpJe-STahxuP88FDvr8BFHwsT3Sp7mdgIal-7eEa-FfU-WttKJJ9Of9KYNSrervYpNFpY7IXfv3DLNvu4-wXn9y1jO18PPg9pl1WAOp7xOZVBhdRnqJlLh_pY-iwwnTmR29wWjumUWx05bZgq0Rb3ZeoZPtgd60otbMKx3VW4JSKzWHQVZPtLkl_VJERLNJMUDQneBel0oXpZdE5iMY4bN_o0_0MRrv6IbphXbNy_rmUbbbdz_38bpwew3tnVZLtdCA9hJVSP4N4VtsXHcDRuaUHslNQoKCdYvHPU_0Asqc7au6sTgvv9MAkk6ndP6orUCyJmMmlPVGfEVp4cN-6iWMF2xC5P4PuNdPEprFV1FZ4B4SyUOS91IbUTWdCFsCykjimpCpWX-QDSfraN69jXYxKQE7PkjY4IMYgQ0yDEYJ13izqnLffItaVfI4gWBSNt-HB7ZOI7tCElZwk_Twew2aPGdMJqZpaQGcD7HnfLz__-5fPrW3sFd4YH30ZmtDve24C7rAF_9M7bhLX59Cy8gNvufH48m75slhGBo5vG4yVzeFWd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSE48EYsFLAQnMBqYid-ICFUUVatWq32AFLFxXVsR1TqJmWzLeKv8esY57FbkOitB5RbYidy_Nkztr_5BuBVQJPgghW0UCKhmROWFoVKaZ66TFiZCS98m2xCTibq8FBP1-DXEAsTaZXDnNhO1L52cY98K9p99LZllmyVPS1iujP-cPqdxgxS8aR1SKfRQWQ__PyBy7fm_d4O9vVrxsafPn_cpX2GAep4zhdUBBlSn6OVLh3aZuHzwHTuMmWVLRzTKbc66tswWaJf7svUM7ywadaVOrMJx_euwzVsko50wmn-dSX4K9vkaIlmgqJTwfuAnT5sL49EJRZjunHRT9UfRnH9W6RkXvB3_zqibS3f-M7__M_uwu3e3ybb3QC5B2uhug-3LqgwPoCjSScXYuekxgl0hsV7Av87Ykl11p1pnZAG8T0LJNp9T-qK1EuBZjLrdlobYitPjlsaKVawveDLQ_hyJU18BBtVXYXHQDgLpeKlLoR2WR50kVkWUsekkIVUpRpBOvS8cb0qe0wOcmJWetIRLQbRYlq0GKzzZlnntNMkubT0SwTUsmCUE9_dPjDxHvqWgrOEn6cj2BwQZPpJrDEr-Izg7YDB1eN_f_LJ5W97ATcQhuZgb7L_FG6ydhxE0t4mbCzmZ-EZXHfni-Nm_rwdUQSOrhqOvwGLIF6J |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+optimal+control%3A+a+numerical+scheme+based+on+occupation+measures+and+interval+analysis&rft.jtitle=Computational+optimization+and+applications&rft.au=Delanoue+Nicolas&rft.au=Lhommeau+Mehdi&rft.au=Lagrange+S%C3%A9bastien&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=77&rft.issue=1&rft.spage=307&rft.epage=334&rft_id=info:doi/10.1007%2Fs10589-020-00198-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |