Packing under convex quadratic constraints
We consider a general class of binary packing problems with a convex quadratic knapsack constraint. We prove that these problems are APX -hard to approximate and present constant-factor approximation algorithms based upon two different algorithmic techniques: a rounding technique tailored to a conve...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 192; číslo 1-2; s. 361 - 386 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a general class of binary packing problems with a convex quadratic knapsack constraint. We prove that these problems are
APX
-hard to approximate and present constant-factor approximation algorithms based upon two different algorithmic techniques: a rounding technique tailored to a convex relaxation in conjunction with a non-convex relaxation, and a greedy strategy. We further show that a combination of these techniques can be used to yield a monotone algorithm leading to a strategyproof mechanism for a game-theoretic variant of the problem. Finally, we present a computational study of the empirical approximation of these algorithms for problem instances arising in the context of real-world gas transport networks. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-021-01675-6 |