Degree-of-Node Task Scheduling of Fine-Grained Parallel Programs on Heterogeneous Systems
Processor specialization has become the development trend of modern processor industry. It is quite possible that this will still be the main-stream in the next decades of semiconductor era. As the diversity of heterogeneous systems grows, organizing computation efficiently on systems with multiple...
Uloženo v:
| Vydáno v: | Journal of computer science and technology Ročník 34; číslo 5; s. 1096 - 1108 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2019
Springer Nature B.V School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China |
| Témata: | |
| ISSN: | 1000-9000, 1860-4749 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Processor specialization has become the development trend of modern processor industry. It is quite possible that this will still be the main-stream in the next decades of semiconductor era. As the diversity of heterogeneous systems grows, organizing computation efficiently on systems with multiple kinds of heterogeneous processors is a challenging problem and will be a normality. In this paper, we analyze some state-of-the-art task scheduling algorithms of heterogeneous computing systems and propose a Degree of Node First (DONF) algorithm for task scheduling of fine-grained parallel programs on heterogeneous systems. The major innovations of DONF include: 1) simplifying task priority calculation for directed acyclic graph (DAG) based fine-grained parallel programs which not only reduces the complexity of task selection but also enables the algorithm to solve the scheduling problem for dynamic DAGs; 2) building a novel communication model in the processor selection phase that makes the task scheduling much more efficient. They are achieved by exploring finegrained parallelism via a dataflow program execution model, and validated through experimental results with a selected set of benchmarks. The results on synthesized and real-world application DAGs show a very good performance. The proposed DONF algorithm significantly outperforms all the evaluated state-of-the-art heuristic algorithms in terms of scheduling length ratio (SLR) and efficiency. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1000-9000 1860-4749 |
| DOI: | 10.1007/s11390-019-1962-4 |