Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions

In a Hilbert space H , we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form A x + B x ∋ 0 where A : H → 2 H is a maximally monotone operator and B : H → H is a cocoercive operator. We extend to th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics & optimization Ročník 80; číslo 3; s. 547 - 598
Hlavní autori: Attouch, Hedy, Cabot, Alexandre
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2019
Springer Nature B.V
Springer Verlag (Germany)
Predmet:
ISSN:0095-4616, 1432-0606
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In a Hilbert space H , we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form A x + B x ∋ 0 where A : H → 2 H is a maximally monotone operator and B : H → H is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-019-09584-z