Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions
In a Hilbert space H , we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form A x + B x ∋ 0 where A : H → 2 H is a maximally monotone operator and B : H → H is a cocoercive operator. We extend to th...
Uložené v:
| Vydané v: | Applied mathematics & optimization Ročník 80; číslo 3; s. 547 - 598 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2019
Springer Nature B.V Springer Verlag (Germany) |
| Predmet: | |
| ISSN: | 0095-4616, 1432-0606 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In a Hilbert space
H
, we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form
A
x
+
B
x
∋
0
where
A
:
H
→
2
H
is a maximally monotone operator and
B
:
H
→
H
is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s00245-019-09584-z |