Stochastic simulation algorithms for computational systems biology: Exact, approximate, and hybrid methods
Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems...
Uloženo v:
| Vydáno v: | Wiley interdisciplinary reviews. Systems biology and medicine Ročník 11; číslo 6; s. e1459 - n/a |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2019
|
| Témata: | |
| ISSN: | 1939-5094, 1939-005X, 1939-005X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well‐stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection‐based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ‐leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic‐deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon.
This article is categorized under:
Models of Systems Properties and Processes > Mechanistic Models
Analytical and Computational Methods > Computational Methods
A graphical representation of the simulation algorithms introduced in the review. Starting from a common root node representing a generic stochastic simulation algorithm, the methodologies differentiate in terms of accuracy and runtime according to exact and approximate methods. We depict with rectangles the algorithm classes and with circles the specific methods. Hybrid methods are here represented as a part of the approximate methods, however, they are often referred as a class of simulation algorithms itself. In the diagram, the τ‐leaping and the chemical Langevin methods are connected since, following the Gillespie's approach, the latter can be derived as an approximation of the former. Analogously, the deterministic methods are connected with the chemical Langevin method. Deterministic methods are indicated with dashed lines since they are not described in detail in this review. |
|---|---|
| AbstractList | Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well‐stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection‐based SSA (RSSA) in the area of exact stochastic simulation. We will then present the
τ
‐leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic‐deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon.
This article is categorized under:
Models of Systems Properties and Processes > Mechanistic Models
Analytical and Computational Methods > Computational Methods Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods. Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods.Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods. Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well‐stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection‐based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ‐leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic‐deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods A graphical representation of the simulation algorithms introduced in the review. Starting from a common root node representing a generic stochastic simulation algorithm, the methodologies differentiate in terms of accuracy and runtime according to exact and approximate methods. We depict with rectangles the algorithm classes and with circles the specific methods. Hybrid methods are here represented as a part of the approximate methods, however, they are often referred as a class of simulation algorithms itself. In the diagram, the τ‐leaping and the chemical Langevin methods are connected since, following the Gillespie's approach, the latter can be derived as an approximation of the former. Analogously, the deterministic methods are connected with the chemical Langevin method. Deterministic methods are indicated with dashed lines since they are not described in detail in this review. |
| Author | Reali, Federico Marchetti, Luca Simoni, Giulia Priami, Corrado |
| Author_xml | – sequence: 1 givenname: Giulia surname: Simoni fullname: Simoni, Giulia organization: The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI) – sequence: 2 givenname: Federico orcidid: 0000-0002-7891-5695 surname: Reali fullname: Reali, Federico organization: The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI) – sequence: 3 givenname: Corrado surname: Priami fullname: Priami, Corrado organization: University of Pisa – sequence: 4 givenname: Luca orcidid: 0000-0001-9043-7705 surname: Marchetti fullname: Marchetti, Luca email: marchetti@cosbi.eu organization: The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31260191$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1PxCAURYnROI668A8Ylpo4ChSa4k4n40eicaFGdw2ldIqhZQSamf57mQ9dmOiKR-55LzdnCLZb2yoAjjA6xwiRi7kvmnNMGd8Ce5gnfIQQe9_ezAxxOgBD7z8QShnlfBcMEkxShDneAx_Pwcpa-KAl9LrpjAjatlCYqXU61I2HlXVQ2mbWhVUkDPS9DyomhbbGTvtLOFkIGc6gmM2cXehGBBU_bQnrvnC6hI0KtS39AdiphPHqcPPug9ebycv4bvTwdHs_vnoYyYTFvjxjiRKkSnCplCw5T2mW8YpkkmERI5ymXLHIqkQSyiirUMoFySpSZKLiWbIPTtZ3Y5vPTvmQN9pLZYxole18TghDKeaU0Igeb9CuaFSZz1xs7_r8208ETteAdNZ7p6ofBKN86T5fus-X7iN78YuVeu0sOKHNfxtzbVT_9-n87fn6cbXxBRonl7w |
| CitedBy_id | crossref_primary_10_3389_fmolb_2021_760077 crossref_primary_10_1038_s42003_021_02553_9 crossref_primary_10_1371_journal_pcbi_1012473 crossref_primary_10_1007_s41870_023_01256_0 crossref_primary_10_1038_s41598_020_65590_0 crossref_primary_10_3390_cells14171382 crossref_primary_10_1016_j_csbj_2020_12_025 crossref_primary_10_1016_j_biomaterials_2022_121514 crossref_primary_10_3390_mca29060120 crossref_primary_10_1109_JSSC_2025_3529715 crossref_primary_10_3390_ijms252312767 crossref_primary_10_3389_fphys_2021_637999 crossref_primary_10_3390_cancers13246312 crossref_primary_10_1109_JETCAS_2023_3243222 |
| Cites_doi | 10.1063/1.2745299 10.1038/s41598-019-40230-4 10.1145/2245276.2232001 10.1093/bib/bbn050 10.1007/BFb0120765 10.1109/WSC.2009.5429309 10.1063/1.4976703 10.1038/nrg2509 10.1109/MSP.2007.273051 10.1063/1.4934972 10.4236/am.2013.41A036 10.1063/1.1378322 10.1021/jp0128832 10.1016/j.procs.2011.04.250 10.1063/1.1613254 10.1021/cr2002917 10.1063/1.1627296 10.1038/srep41231 10.1063/1.2436869 10.1016/0021-9991(76)90041-3 10.1002/9780470753767 10.1021/j100540a008 10.1063/1.481811 10.11948/2015034 10.1038/s41598-017-00854-w 10.1109/TCBB.2016.2530066 10.1051/proc:2005001 10.1504/IJCBDD.2014.066542 10.1063/1.1810475 10.1063/1.1778376 10.1063/1.2354085 10.1016/j.ymgme.2017.12.183 10.1016/j.jcp.2016.04.056 10.1063/1.4922923 10.1063/1.4771660 10.1063/1.4927916 10.1063/1.1833357 10.1021/jp806431b 10.1021/jp993732q 10.1002/psp4.12304 10.1007/s10483-007-1009-y 10.3389/fams.2017.00006 10.1098/rsif.2008.0086.focus 10.1016/j.ces.2011.05.035 10.1007/978-3-540-24743-2_31 10.1063/1.1505860 10.1038/nature03232 10.1137/15M1024664 10.1063/1.4711143 10.1063/1.5016338 10.1063/1.4896985 10.1063/1.4928635 10.1038/118558a0 10.1007/s10543-015-0556-y 10.1063/1.1835951 10.1063/1.3154624 10.1063/1.2799998 10.1007/978-3-319-63113-4 10.1016/j.compbiolchem.2005.10.007 10.1007/b98885 10.1007/s11538-009-9467-x 10.1063/1.2919546 10.1186/1752-0509-5-26 10.1063/1.4905196 10.1016/0304-4149(78)90020-0 10.1063/1.2819665 10.1186/s12918-015-0176-9 10.1093/bioinformatics/btl465 10.1109/TCBB.2009.47 10.1007/978-3-540-25974-9_22 10.1016/j.jcp.2007.10.021 10.1063/1.2159468 10.1038/nbt1356 10.1073/pnas.6.7.410 10.1093/bioinformatics/bti308 10.1142/p1004 10.1063/1.2218339 10.1049/iet-syb:20060035 10.1214/12-AAP841 10.1073/pnas.162041399 10.1126/science.1070919 10.1063/1.3297948 10.1038/nbt1054 10.1137/130925657 10.1063/1.1992473 10.1016/S0168-9525(98)01659-X 10.1038/nature13476 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1002/wsbm.1459 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1939-005X |
| EndPage | n/a |
| ExternalDocumentID | 31260191 10_1002_wsbm_1459 WSBM1459 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- 05W 1OC 1VH 33P 4.4 53G 5DZ 8-1 A00 AAESR AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AASGY AAXRX AAZKR ABCUV ABQWH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI DCZOG DRFUL DRSTM EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W PQQKQ ROL SUPJJ SV3 WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ XV2 ZZTAW ~S- 0R~ AAMMB AAYXX AEFGJ AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION TEORI NPM 7X8 |
| ID | FETCH-LOGICAL-c3539-9853ea2f31deecd9964889f28c51a53e1669e5c35e3c24545f069a28f2b8af983 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477368700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-5094 1939-005X |
| IngestDate | Thu Jul 10 19:28:15 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Sat Nov 29 02:05:12 EST 2025 Tue Nov 18 22:00:50 EST 2025 Wed Jan 22 16:39:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | systems biology hybrid stochastic simulation stochastic simulation computational |
| Language | English |
| License | 2019 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3539-9853ea2f31deecd9964889f28c51a53e1669e5c35e3c24545f069a28f2b8af983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-7891-5695 0000-0001-9043-7705 |
| PMID | 31260191 |
| PQID | 2250619424 |
| PQPubID | 23479 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2250619424 pubmed_primary_31260191 crossref_primary_10_1002_wsbm_1459 crossref_citationtrail_10_1002_wsbm_1459 wiley_primary_10_1002_wsbm_1459_WSBM1459 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2019 2019-11-00 2019-Nov 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November/December 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States |
| PublicationTitle | Wiley interdisciplinary reviews. Systems biology and medicine |
| PublicationTitleAlternate | Wiley Interdiscip Rev Syst Biol Med |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2004; 121 2017; 7 2003; 119 2006; 30 2013; 4 2017; 3 1976; 22 2013; 23 2018; 123 2015; 142 2015; 143 2002; 99 2002; 117 1976 2005; 21 2009; 113 2008; 227 2011a 2008; 5 2017b; 146 2005; 23 2011; 111 1978; 6 2018; 7 2007; 28 2009; 10 1986; 43 2016; 317 2006; 22 1999; 15 2002; 106 2011; 66 2012; 136 2007; 1 2012; 137 2014; 7 2007; 24 2014; 12 2007; 25 2006; 125 2010; 72 2006; 124 2007; 126 2015; 56 2019; 9 2015; 5 2007; 127 1920; 6 2000; 113 2012 2002; 297 2005; 433 2006; 16 2018; 148 2016; 54 2009 2008 2017a; 14 2007 2008; 128 2005 2008; 10 2004 2009; 130 2015; 9 2011; 5 2011; 8 2014; 510 1977; 81 2011b; 4 2005; 122 2005; 123 2000; 104 1926; 118 2010; 132 2017 2016 2015 2014; 141 2001; 115 2005; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_90_1 Burden R. L. (e_1_2_7_13_1) 2016 e_1_2_7_73_1 e_1_2_7_94_1 Press W. H. (e_1_2_7_68_1) 2007 e_1_2_7_71_1 e_1_2_7_92_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 Ethier S. N. (e_1_2_7_25_1) 1986; 43 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Li H. (e_1_2_7_50_1) 2006; 16 |
| References_xml | – volume: 30 start-page: 39 issue: 1 year: 2006 end-page: 49 article-title: The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior publication-title: Computational Biology and Chemistry – year: 2009 – volume: 8 start-page: 27 issue: 1 year: 2011 end-page: 35 article-title: Efficient formulations for exact stochastic simulation of chemical systems publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 113 start-page: 297 issue: 1 year: 2000 end-page: 306 article-title: The chemical Langevin equation publication-title: The Journal of Chemical Physics – volume: 5 start-page: 26 issue: 1 year: 2011 article-title: Integration of lipidomics and transcriptomics data towards a systems biology model of sphingolipid metabolism publication-title: BMC Systems Biology – volume: 297 start-page: 1183 issue: 5584 year: 2002 end-page: 1186 article-title: Stochastic gene expression in a single cell publication-title: Science – volume: 143 start-page: 184105 issue: 18 year: 2015 article-title: A fast exact simulation algorithm for a class of markov jump processes publication-title: The Journal of Chemical Physics – year: 2005 – volume: 6 start-page: 410 year: 1920 end-page: 415 article-title: Analytical note on certain rhythmic relations in organic systems publication-title: Proceedings of the National Academy of Sciences – volume: 3 year: 2017 article-title: Optimization algorithms for computational systems biology publication-title: Frontiers in Applied Mathematics and Statistics – volume: 4 start-page: 2297 year: 2011b end-page: 2306 article-title: Implicit second order weak Taylor tau‐leaping methods for the stochastic simulation of chemical kinetics publication-title: Procedia Computer Science – volume: 142 start-page: 244106 issue: 24 year: 2015 article-title: On the rejection‐based algorithm for simulation and analysis of large‐scale reaction networks publication-title: The Journal of Chemical Physics – volume: 22 start-page: 403 issue: 4 year: 1976 end-page: 434 article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions publication-title: Journal of Computational Physics – volume: 148 start-page: 064111 issue: 6 year: 2018 article-title: Incorporating extrinsic noise into the stochastic simulation of biochemical reactions: A comparison of approaches publication-title: The Journal of Chemical Physics – volume: 146 start-page: 084107 issue: 8 year: 2017b article-title: Efficient stochastic simulation of biochemical reactions with noise and delays publication-title: The Journal of Chemical Physics – volume: 130 start-page: 244104 issue: 24 year: 2009 article-title: A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks publication-title: The Journal of Chemical Physics – volume: 113 start-page: 1640 issue: 6 year: 2009 end-page: 1644 article-title: Deterministic limit of stochastic chemical kinetics publication-title: The Journal of Physical Chemistry B – volume: 118 start-page: 558 year: 1926 end-page: 560 article-title: Fluctuations in the abundance of a species considered mathematically publication-title: Nature – volume: 137 start-page: 234110 issue: 23 year: 2012 article-title: Variable time‐stepping in the pathwise numerical solution of the chemical Langevin equation publication-title: The Journal of Chemical Physics – volume: 15 start-page: 65 issue: 2 year: 1999 end-page: 69 article-title: It's a noisy business! Genetic regulation at the nanomolar scale publication-title: Trends in Genetics – volume: 9 start-page: 4322 issue: 1 year: 2019 article-title: The 5‐formyltetrahydrofolate futile cycle reduces pathway stochasticity in an extended hybrid‐stochastic model of folate‐mediated one‐carbon metabolism publication-title: Scientific Reports – volume: 7 start-page: 341 issue: 4 year: 2014 end-page: 357 article-title: Adaptive tree‐based search for stochastic simulation algorithm publication-title: International Journal of Computational Biology and Drug Design – volume: 124 start-page: 044109 issue: 5 year: 2006 article-title: Efficient step size selection for the tau‐leaping simulation method publication-title: The Journal of Chemical Physics – start-page: 67 year: 1976 end-page: 78 – volume: 317 start-page: 301 year: 2016 end-page: 317 article-title: HRSSA—Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks publication-title: Journal of Computational Physics – volume: 43 start-page: 484 year: 1986 article-title: Markov processes: Characterization and publication-title: Convergence – volume: 104 start-page: 1876 issue: 9 year: 2000 end-page: 1889 article-title: Efficient exact stochastic simulation of chemical systems with many species and many channels publication-title: The Journal of Physical Chemistry A – volume: 142 start-page: 034118 issue: 3 year: 2015 article-title: Adaptive hybrid simulations for multiscale stochastic reaction networks publication-title: The Journal of Chemical Physics – volume: 22 start-page: 2782 issue: 22 year: 2006 end-page: 2789 article-title: Dynamic partitioning for hybrid simulation of the bistable HIV‐1 transactivation network publication-title: Bioinformatics – volume: 117 start-page: 6959 issue: 15 year: 2002 end-page: 6969 article-title: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics publication-title: The Journal of Chemical Physics – volume: 24 start-page: 27 issue: 1 year: 2007 end-page: 36 article-title: Stochastic modeling and simulation of gene networks‐a review of the state‐of‐the‐art research on stochastic simulations publication-title: IEEE Signal Processing Magazine – volume: 14 start-page: 657 issue: 3 year: 2017a end-page: 667 article-title: Efficient constant‐time complexity algorithm for stochastic simulation of large reaction networks publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 126 start-page: 074102 issue: 7 year: 2007 article-title: K‐leap method for accelerating stochastic simulation of coupled chemical reactions publication-title: The Journal of Chemical Physics – volume: 81 start-page: 2340 issue: 25 year: 1977 end-page: 2361 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: The Journal of Physical Chemistry – volume: 122 start-page: 054103 issue: 5 year: 2005 article-title: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions publication-title: The Journal of Chemical Physics – volume: 111 start-page: 6387 issue: 10 year: 2011 end-page: 6422 article-title: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics publication-title: Chemical Reviews – volume: 10 start-page: 53 issue: 1 year: 2008 end-page: 64 article-title: Biochemical simulations: Stochastic, approximate stochastic and hybrid approaches publication-title: Briefings in Bioinformatics – volume: 28 start-page: 1361 issue: 10 year: 2007 end-page: 1371 article-title: L‐leap: Accelerating the stochastic simulation of chemically reacting systems publication-title: Applied Mathematics and Mechanics – year: 2008 – year: 2004 – volume: 132 start-page: 044102 issue: 4 year: 2010 article-title: A partial‐propensity variant of the composition‐rejection stochastic simulation algorithm for chemical reaction networks publication-title: The Journal of Chemical Physics – volume: 7 year: 2017 article-title: Mechanistic interplay between ceramide and insulin resistance publication-title: Scientific Reports – volume: 115 start-page: 1716 issue: 4 year: 2001 end-page: 1733 article-title: Approximate accelerated stochastic simulation of chemically reacting systems publication-title: The Journal of Chemical Physics – volume: 127 start-page: 214107 issue: 21 year: 2007 article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays publication-title: The Journal of Chemical Physics – volume: 5 start-page: S29 issue: suppl_1 year: 2008 end-page: S39 article-title: Quantitative approaches to the study of bistability in the lac operon of publication-title: Journal of the Royal Society Interface – volume: 136 start-page: 184101 issue: 18 year: 2012 article-title: An adaptive stepsize method for the chemical Langevin equation publication-title: The Journal of Chemical Physics – volume: 128 start-page: 054103 issue: 5 year: 2008 article-title: Incorporating postleap checks in tau‐leaping publication-title: The Journal of Chemical Physics – volume: 23 start-page: 529 issue: 2 year: 2013 end-page: 583 article-title: Separation of time‐scales and model reduction for stochastic reaction networks publication-title: The Annals of Applied Probability – volume: 227 start-page: 2455 issue: 4 year: 2008 end-page: 2462 article-title: Efficient kinetic Monte Carlo simulation publication-title: Journal of Computational Physics – year: 2015 – volume: 25 start-page: 1239 issue: 11 year: 2007 end-page: 1249 article-title: Executable cell biology publication-title: Nature Biotechnology – volume: 9 start-page: 47 issue: 1 year: 2015 article-title: Computational modeling of sphingolipid metabolism publication-title: BMC Systems Biology – volume: 123 start-page: S73 year: 2018 end-page: S74 article-title: Integrated quantitative systems pharmacology (QSP) model of lysosomal diseases provides an innovative computational platform to support research and therapeutic development for the sphingolipidoses publication-title: Molecular Genetics and Metabolism Systems Biology – volume: 72 start-page: 719 issue: 3 year: 2010 end-page: 762 article-title: From microscopic to macroscopic descriptions of cell migration on growing domains publication-title: Bulletin of Mathematical Biology – volume: 56 start-page: 189 issue: 1 year: 2015 end-page: 239 article-title: Multilevel hybrid chernoff tau‐leap publication-title: BIT Numerical Mathematics – volume: 10 start-page: 122 issue: 2 year: 2009 end-page: 133 article-title: Stochastic modelling for quantitative description of heterogeneous biological systems publication-title: Nature Reviews Genetics – volume: 54 start-page: 505 issue: 2 year: 2016 end-page: 529 article-title: Multilevel Monte Carlo for stochastic differential equations with additive small noise publication-title: SIAM Journal on Numerical Analysis – volume: 6 start-page: 223 issue: 3 year: 1978 end-page: 240 article-title: Strong approximation theorems for density dependent Markov chains publication-title: Stochastic Processes and their Applications – year: 2007 – volume: 99 start-page: 12795 issue: 20 year: 2002 end-page: 12800 article-title: Intrinsic and extrinsic contributions to stochasticity in gene expression publication-title: Proceedings of the National Academy of Sciences – volume: 106 start-page: 5063 issue: 20 year: 2002 end-page: 5071 article-title: The chemical Langevin and Fokker‐Planck equations for the reversible isomerization reaction publication-title: The Journal of Physical Chemistry A – volume: 66 start-page: 4059 issue: 18 year: 2011 end-page: 4069 article-title: Stochastic simulation of population balance models with disparate time scales: Hybrid strategies publication-title: Chemical Engineering Science – volume: 119 start-page: 8229 issue: 16 year: 2003 end-page: 8234 article-title: Improved lead‐size selection for accelerated stochastic simulation publication-title: The Journal of Chemical Physics – volume: 16 start-page: 1 year: 2006 end-page: 11 article-title: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems publication-title: Journal of Chemical Physics – volume: 119 start-page: 12784 issue: 24 year: 2003 end-page: 12794 article-title: Stiffness in stochastic chemically reacting systems: The implicit tau‐leaping method publication-title: The Journal of Chemical Physics – volume: 128 start-page: 205101 issue: 20 year: 2008 article-title: A constant‐time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks publication-title: The Journal of Chemical Physics – year: 2016 – volume: 1 start-page: 130 issue: 2 year: 2007 end-page: 148 article-title: Analysis of lactose metabolism in using reachability analysis of hybrid systems publication-title: IET Systems Biology – volume: 14 start-page: 1 year: 2005 end-page: 13 article-title: Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems publication-title: ESAIM: Proceedings – volume: 123 start-page: 054104 issue: 5 year: 2005 article-title: Avoiding negative populations in explicit Poisson tau‐leaping publication-title: The Journal of Chemical Physics – volume: 510 start-page: 68 year: 2014 end-page: 75 article-title: Sphingolipid lysosomal storage disorders publication-title: Nature – volume: 125 start-page: 084103 issue: 8 year: 2006 article-title: R‐leaping: Accelerating the stochastic simulation algorithm by reaction leaps publication-title: The Journal of Chemical Physics – volume: 125 start-page: 144107 issue: 14 year: 2006 article-title: A partitioned leaping approach for multiscale modeling of chemical reaction dynamics publication-title: The Journal of Chemical Physics – volume: 7 start-page: 797 issue: 1 year: 2017 article-title: A hybrid stochastic model of folate‐mediated one‐carbon metabolism: Effect of the common c677t mthfr variant on de novo thymidylate biosynthesis publication-title: Scientific Reports – year: 2012 – volume: 121 start-page: 10356 issue: 21 year: 2004 end-page: 10364 article-title: Binomial leap methods for simulating stochastic chemical kinetics publication-title: The Journal of Chemical Physics – year: 2011a – volume: 126 start-page: 224101 issue: 22 year: 2007 article-title: Adaptive explicit‐implicit tau‐leaping method with automatic tau selection publication-title: The Journal of Chemical Physics – volume: 4 start-page: 235 issue: 1A year: 2013 end-page: 241 article-title: Automatic simulation of the chemical Langevin equation publication-title: Applied Mathematics – volume: 121 start-page: 4059 issue: 9 year: 2004 end-page: 4067 article-title: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems publication-title: The Journal of Chemical Physics – volume: 21 start-page: 2136 issue: 9 year: 2005 end-page: 2137 article-title: Time accelerated Monte Carlo simulations of biological networks using the binomial ‐leap method publication-title: Bioinformatics – volume: 122 start-page: 024412 issue: 2 year: 2005 article-title: Binomial distribution based ‐leap accelerated stochastic simulation publication-title: The Journal of Chemical Physics – volume: 143 start-page: 054104 issue: 5 year: 2015 article-title: Simulation of biochemical reactions with time‐dependent rates by the rejection‐based algorithm publication-title: The Journal of Chemical Physics – volume: 23 start-page: 131 issue: 1 year: 2005 end-page: 136 article-title: Automatic generation of cellular reaction networks with Moleculizer 1.0 publication-title: Nature Biotechnology – volume: 7 start-page: 442 year: 2018 end-page: 452 article-title: Quantitative systems pharmacology modeling of acid sphingomyelinase deficiency and the enzyme replacement therapy olipudase alfa is an innovative tool for linking pathophysiology and pharmacology publication-title: CPT Pharmacometrics & Systems Pharmacology – volume: 141 start-page: 134116 issue: 13 year: 2014 article-title: Efficient rejection‐based simulation of biochemical reactions with stochastic noise and delays publication-title: The Journal of Chemical Physics – volume: 143 start-page: 074108 issue: 7 year: 2015 article-title: Constant‐complexity stochastic simulation algorithm with optimal binning publication-title: The Journal of Chemical Physics – volume: 12 start-page: 581 issue: 2 year: 2014 end-page: 615 article-title: Hybrid chernoff tau‐leap publication-title: Multiscale Modeling and Simulation – volume: 5 start-page: 420 issue: 3 year: 2015 end-page: 452 article-title: Implicit simulation methods for stochastic chemical kinetics publication-title: Journal of Applied Analysis and Computation – year: 2017 – volume: 433 start-page: 425 year: 2005 end-page: 430 article-title: Simulation and validation of modelled sphingolipid metabolism in publication-title: Nature – ident: e_1_2_7_19_1 doi: 10.1063/1.2745299 – ident: e_1_2_7_61_1 doi: 10.1038/s41598-019-40230-4 – ident: e_1_2_7_86_1 doi: 10.1145/2245276.2232001 – ident: e_1_2_7_65_1 doi: 10.1093/bib/bbn050 – ident: e_1_2_7_48_1 doi: 10.1007/BFb0120765 – ident: e_1_2_7_77_1 doi: 10.1109/WSC.2009.5429309 – ident: e_1_2_7_90_1 doi: 10.1063/1.4976703 – ident: e_1_2_7_93_1 doi: 10.1038/nrg2509 – ident: e_1_2_7_15_1 doi: 10.1109/MSP.2007.273051 – ident: e_1_2_7_51_1 doi: 10.1063/1.4934972 – ident: e_1_2_7_3_1 – ident: e_1_2_7_43_1 doi: 10.4236/am.2013.41A036 – ident: e_1_2_7_31_1 doi: 10.1063/1.1378322 – ident: e_1_2_7_32_1 doi: 10.1021/jp0128832 – ident: e_1_2_7_4_1 doi: 10.1016/j.procs.2011.04.250 – ident: e_1_2_7_34_1 doi: 10.1063/1.1613254 – ident: e_1_2_7_59_1 doi: 10.1021/cr2002917 – ident: e_1_2_7_73_1 doi: 10.1063/1.1627296 – ident: e_1_2_7_74_1 doi: 10.1038/srep41231 – ident: e_1_2_7_16_1 doi: 10.1063/1.2436869 – ident: e_1_2_7_28_1 doi: 10.1016/0021-9991(76)90041-3 – ident: e_1_2_7_14_1 doi: 10.1002/9780470753767 – ident: e_1_2_7_29_1 doi: 10.1021/j100540a008 – ident: e_1_2_7_30_1 doi: 10.1063/1.481811 – ident: e_1_2_7_2_1 doi: 10.11948/2015034 – ident: e_1_2_7_60_1 doi: 10.1038/s41598-017-00854-w – ident: e_1_2_7_89_1 doi: 10.1109/TCBB.2016.2530066 – ident: e_1_2_7_21_1 – volume: 16 start-page: 1 year: 2006 ident: e_1_2_7_50_1 article-title: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems publication-title: Journal of Chemical Physics – ident: e_1_2_7_5_1 doi: 10.1051/proc:2005001 – ident: e_1_2_7_87_1 doi: 10.1504/IJCBDD.2014.066542 – ident: e_1_2_7_91_1 doi: 10.1063/1.1810475 – ident: e_1_2_7_20_1 doi: 10.1063/1.1778376 – ident: e_1_2_7_38_1 doi: 10.1063/1.2354085 – ident: e_1_2_7_46_1 doi: 10.1016/j.ymgme.2017.12.183 – ident: e_1_2_7_54_1 doi: 10.1016/j.jcp.2016.04.056 – ident: e_1_2_7_88_1 doi: 10.1063/1.4922923 – ident: e_1_2_7_41_1 doi: 10.1063/1.4771660 – ident: e_1_2_7_84_1 doi: 10.1063/1.4927916 – ident: e_1_2_7_23_1 doi: 10.1063/1.1833357 – ident: e_1_2_7_33_1 doi: 10.1021/jp806431b – ident: e_1_2_7_27_1 doi: 10.1021/jp993732q – ident: e_1_2_7_45_1 doi: 10.1002/psp4.12304 – ident: e_1_2_7_66_1 doi: 10.1007/s10483-007-1009-y – ident: e_1_2_7_75_1 doi: 10.3389/fams.2017.00006 – ident: e_1_2_7_79_1 doi: 10.1098/rsif.2008.0086.focus – ident: e_1_2_7_44_1 doi: 10.1016/j.ces.2011.05.035 – ident: e_1_2_7_64_1 doi: 10.1007/978-3-540-24743-2_31 – ident: e_1_2_7_39_1 doi: 10.1063/1.1505860 – ident: e_1_2_7_6_1 doi: 10.1038/nature03232 – ident: e_1_2_7_9_1 doi: 10.1137/15M1024664 – ident: e_1_2_7_42_1 doi: 10.1063/1.4711143 – ident: e_1_2_7_83_1 doi: 10.1063/1.5016338 – ident: e_1_2_7_85_1 doi: 10.1063/1.4896985 – ident: e_1_2_7_78_1 doi: 10.1063/1.4928635 – ident: e_1_2_7_92_1 doi: 10.1038/118558a0 – ident: e_1_2_7_63_1 doi: 10.1007/s10543-015-0556-y – ident: e_1_2_7_76_1 doi: 10.1063/1.1835951 – ident: e_1_2_7_71_1 doi: 10.1063/1.3154624 – ident: e_1_2_7_7_1 doi: 10.1063/1.2799998 – ident: e_1_2_7_55_1 doi: 10.1007/978-3-319-63113-4 – ident: e_1_2_7_58_1 doi: 10.1016/j.compbiolchem.2005.10.007 – ident: e_1_2_7_70_1 doi: 10.1007/b98885 – ident: e_1_2_7_11_1 doi: 10.1007/s11538-009-9467-x – ident: e_1_2_7_81_1 doi: 10.1063/1.2919546 – ident: e_1_2_7_36_1 doi: 10.1186/1752-0509-5-26 – ident: e_1_2_7_40_1 doi: 10.1063/1.4905196 – ident: e_1_2_7_49_1 doi: 10.1016/0304-4149(78)90020-0 – ident: e_1_2_7_8_1 doi: 10.1063/1.2819665 – ident: e_1_2_7_94_1 doi: 10.1186/s12918-015-0176-9 – ident: e_1_2_7_35_1 doi: 10.1093/bioinformatics/btl465 – ident: e_1_2_7_56_1 doi: 10.1109/TCBB.2009.47 – volume: 43 start-page: 484 year: 1986 ident: e_1_2_7_25_1 article-title: Markov processes: Characterization and publication-title: Convergence – ident: e_1_2_7_12_1 doi: 10.1007/978-3-540-25974-9_22 – ident: e_1_2_7_80_1 doi: 10.1016/j.jcp.2007.10.021 – ident: e_1_2_7_18_1 doi: 10.1063/1.2159468 – ident: e_1_2_7_26_1 doi: 10.1038/nbt1356 – ident: e_1_2_7_53_1 doi: 10.1073/pnas.6.7.410 – ident: e_1_2_7_22_1 doi: 10.1093/bioinformatics/bti308 – ident: e_1_2_7_69_1 doi: 10.1142/p1004 – ident: e_1_2_7_10_1 doi: 10.1063/1.2218339 – ident: e_1_2_7_37_1 doi: 10.1049/iet-syb:20060035 – ident: e_1_2_7_47_1 doi: 10.1214/12-AAP841 – volume-title: Numerical recipes 3rd edition: The art of scientific computing year: 2007 ident: e_1_2_7_68_1 – ident: e_1_2_7_82_1 doi: 10.1073/pnas.162041399 – ident: e_1_2_7_24_1 doi: 10.1126/science.1070919 – volume-title: Numerical analysis year: 2016 ident: e_1_2_7_13_1 – ident: e_1_2_7_72_1 doi: 10.1063/1.3297948 – ident: e_1_2_7_52_1 doi: 10.1038/nbt1054 – ident: e_1_2_7_62_1 doi: 10.1137/130925657 – ident: e_1_2_7_17_1 doi: 10.1063/1.1992473 – ident: e_1_2_7_57_1 doi: 10.1016/S0168-9525(98)01659-X – ident: e_1_2_7_67_1 doi: 10.1038/nature13476 |
| SSID | ssj0065499 |
| Score | 2.298533 |
| SecondaryResourceType | review_article |
| Snippet | Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1459 |
| SubjectTerms | computational hybrid stochastic simulation stochastic simulation systems biology |
| Title | Stochastic simulation algorithms for computational systems biology: Exact, approximate, and hybrid methods |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwsbm.1459 https://www.ncbi.nlm.nih.gov/pubmed/31260191 https://www.proquest.com/docview/2250619424 |
| Volume | 11 |
| WOSCitedRecordID | wos000477368700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-005X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065499 issn: 1939-5094 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB1BAYkNcHmWl8wVCxZEdZw0tWHFq7oLQFc8u4scx6FFNEVNQPD3jOOkCAESErtEmViWxzM-tjXnAGz7jCZRS1HHNxUyvoiFIzEXOyqIA1e2FIsKHbKb09b5Oe90xP8x2K9qYSw_xOjAzURGka9NgMsoa7yThmIK6GOcN8U4TDCct34NJo4v2tenVSIOzNbHXioLx_DEVcRClDVGP39cjj5hzI-QtVhz2rO_6u0czJRQkxzYufEHxnQ6D1NWfPJ1Ae4v84HqSsPTTLJev5TxIvLhbjDs5d1-RhDPElWoPpQnhsTyPmekpG7aIycvUuW7pGAmf-kh-tX4ksak-2oqwYjVp84W4bp9cnX0zymVFxzlNXG0BC7iWrLEc2OtVYx7IoxzkTCumq7ET24QCN1EW-0p5iMIS2ggJOMJi7hMBPeWoJYOUr0ChMWeCjjVXNDI15pGEjc4XLGYu8qnsa7DTuWAUJW05EYd4yG0hMosNEMXmqGrw9-R6aPl4vjKaKvyYoiRYq4_ZKoHT1mImYuaMxvm12HZunfUjOcaajXhYm8KL37ffnh7eXhmHlZ_broG04izhC1hXIdaPnzSGzCpnvNeNtyE8VaHb5aT9w12QvSQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NDgQv24ANOmB4Ew88LJrj_KiNeGHQaoiumti67S1yHIcWtcnUpFP733OOk04TICHxligXy7rznT-fdd8BvPMZTeOOoo5vKmR8kQhHYix2VJiEruwoFld9yC77ncGAX1-LszX42NTCWH6IVcLNeEYVr42Dm4T00R1rKMaAKTp6IB7Auo_LKGjB-pfvvWG_icShOfvYW2XhGKK4hlmIsqPVz_f3o99A5n3MWm06vc3_m-4WbNRgk3yyq-MprOnsGTyy7SeXz-HneZmrkTRMzaQYT-tGXkROfuSzcTmaFgQRLVFV34c6Z0gs83NBavKmD6S7kKo8JBU3-WKM-FfjS5aQ0dLUghHbobrYhmGve_H5xKl7LzjKC1BdArdxLVnquYnWKsFTEXq6SBlXgSvxkxuGQgcoqz3FfIRhKQ2FZDxlMZep4N4OtLI80y-BsMRTIaeaCxr7WtNY4hGHK5ZwV_k00W1431ggUjUxuemPMYkspTKLjOoio7o2HKxEbywbx5-E9hszRugr5gJEZjqfFxHGLmqyNsxvwwtr39UwnmvI1YSLs6nM-Pfxo6vz41PzsPvvom_h8cnFaT_qfx18ewVPEHUJW9D4GlrlbK7fwEN1W46L2V69hn8BTKj3mA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7xc9rL-LWxDgbetAceiHCcNLUnXtigYlpXoTGgb5FjO2tRm1ZNmOC_5xwnnRCbhMRLlCiXyPL5zp9t3fcBfAoZTZOWol5oK2RCoYUnMRd7KtKRL1uKJaUO2WWn1e3yXk-czcFhXQvj-CFmG242Msp8bQPcTHR68Jc1FHPACAO9KeZhEa8RhuXi8c_2RafOxJFd-7hTZeFZoriaWYiyg9nHD-ejRyDzIWYtJ532yvOauwqvKrBJjtzoWIM5k63DspOfvNuA6_NirPrSMjWTfDCqhLyIHP4eTwdFf5QTRLRElboP1Z4hcczPOanImz6Tk1upin1ScpPfDhD_GnzINOnf2Vow4hSq89dw0T759fXUq7QXPBU0sbsETuNGsjTwtTFK46oII12kjKumL_GVH0XCNNHWBIqFCMNSGgnJeMoSLlPBgzewkI0z8xYI04GKODVc0CQ0hiYSlzhcMc19FVJtGrBXeyBWFTG51ccYxo5SmcW262LbdQ34ODOdODaOfxl9qN0YY6zYAxCZmfFNHmPuonbXhoUN2HT-nf0m8C25mvCxNaUb____-Or8yw978-7pprvw4uy4HXe-db9vwUsEXcLVM27DQjG9Me9hSf0pBvl0pxrC9-Yd9xM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+simulation+algorithms+for+computational+systems+biology%3A+Exact%2C+approximate%2C+and+hybrid+methods&rft.jtitle=Wiley+interdisciplinary+reviews.+Systems+biology+and+medicine&rft.au=Simoni%2C+Giulia&rft.au=Reali%2C+Federico&rft.au=Priami%2C+Corrado&rft.au=Marchetti%2C+Luca&rft.date=2019-11-01&rft.issn=1939-5094&rft.eissn=1939-005X&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1002%2Fwsbm.1459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wsbm_1459 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5094&client=summon |