Stochastic simulation algorithms for computational systems biology: Exact, approximate, and hybrid methods

Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Wiley interdisciplinary reviews. Systems biology and medicine Ročník 11; číslo 6; s. e1459 - n/a
Hlavní autori: Simoni, Giulia, Reali, Federico, Priami, Corrado, Marchetti, Luca
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.11.2019
Predmet:
ISSN:1939-5094, 1939-005X, 1939-005X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well‐stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection‐based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ‐leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic‐deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods A graphical representation of the simulation algorithms introduced in the review. Starting from a common root node representing a generic stochastic simulation algorithm, the methodologies differentiate in terms of accuracy and runtime according to exact and approximate methods. We depict with rectangles the algorithm classes and with circles the specific methods. Hybrid methods are here represented as a part of the approximate methods, however, they are often referred as a class of simulation algorithms itself. In the diagram, the τ‐leaping and the chemical Langevin methods are connected since, following the Gillespie's approach, the latter can be derived as an approximation of the former. Analogously, the deterministic methods are connected with the chemical Langevin method. Deterministic methods are indicated with dashed lines since they are not described in detail in this review.
AbstractList Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well‐stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection‐based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ ‐leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic‐deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods
Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods.
Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods.Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods.
Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well‐stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection‐based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ‐leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic‐deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods A graphical representation of the simulation algorithms introduced in the review. Starting from a common root node representing a generic stochastic simulation algorithm, the methodologies differentiate in terms of accuracy and runtime according to exact and approximate methods. We depict with rectangles the algorithm classes and with circles the specific methods. Hybrid methods are here represented as a part of the approximate methods, however, they are often referred as a class of simulation algorithms itself. In the diagram, the τ‐leaping and the chemical Langevin methods are connected since, following the Gillespie's approach, the latter can be derived as an approximation of the former. Analogously, the deterministic methods are connected with the chemical Langevin method. Deterministic methods are indicated with dashed lines since they are not described in detail in this review.
Author Reali, Federico
Marchetti, Luca
Simoni, Giulia
Priami, Corrado
Author_xml – sequence: 1
  givenname: Giulia
  surname: Simoni
  fullname: Simoni, Giulia
  organization: The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI)
– sequence: 2
  givenname: Federico
  orcidid: 0000-0002-7891-5695
  surname: Reali
  fullname: Reali, Federico
  organization: The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI)
– sequence: 3
  givenname: Corrado
  surname: Priami
  fullname: Priami, Corrado
  organization: University of Pisa
– sequence: 4
  givenname: Luca
  orcidid: 0000-0001-9043-7705
  surname: Marchetti
  fullname: Marchetti, Luca
  email: marchetti@cosbi.eu
  organization: The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31260191$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PxCAURYnROI668A8Ylpo4ChSa4k4n40eicaFGdw2ldIqhZQSamf57mQ9dmOiKR-55LzdnCLZb2yoAjjA6xwiRi7kvmnNMGd8Ce5gnfIQQe9_ezAxxOgBD7z8QShnlfBcMEkxShDneAx_Pwcpa-KAl9LrpjAjatlCYqXU61I2HlXVQ2mbWhVUkDPS9DyomhbbGTvtLOFkIGc6gmM2cXehGBBU_bQnrvnC6hI0KtS39AdiphPHqcPPug9ebycv4bvTwdHs_vnoYyYTFvjxjiRKkSnCplCw5T2mW8YpkkmERI5ymXLHIqkQSyiirUMoFySpSZKLiWbIPTtZ3Y5vPTvmQN9pLZYxole18TghDKeaU0Igeb9CuaFSZz1xs7_r8208ETteAdNZ7p6ofBKN86T5fus-X7iN78YuVeu0sOKHNfxtzbVT_9-n87fn6cbXxBRonl7w
CitedBy_id crossref_primary_10_3389_fmolb_2021_760077
crossref_primary_10_1038_s42003_021_02553_9
crossref_primary_10_1371_journal_pcbi_1012473
crossref_primary_10_1007_s41870_023_01256_0
crossref_primary_10_1038_s41598_020_65590_0
crossref_primary_10_3390_cells14171382
crossref_primary_10_1016_j_csbj_2020_12_025
crossref_primary_10_1016_j_biomaterials_2022_121514
crossref_primary_10_3390_mca29060120
crossref_primary_10_1109_JSSC_2025_3529715
crossref_primary_10_3390_ijms252312767
crossref_primary_10_3389_fphys_2021_637999
crossref_primary_10_3390_cancers13246312
crossref_primary_10_1109_JETCAS_2023_3243222
Cites_doi 10.1063/1.2745299
10.1038/s41598-019-40230-4
10.1145/2245276.2232001
10.1093/bib/bbn050
10.1007/BFb0120765
10.1109/WSC.2009.5429309
10.1063/1.4976703
10.1038/nrg2509
10.1109/MSP.2007.273051
10.1063/1.4934972
10.4236/am.2013.41A036
10.1063/1.1378322
10.1021/jp0128832
10.1016/j.procs.2011.04.250
10.1063/1.1613254
10.1021/cr2002917
10.1063/1.1627296
10.1038/srep41231
10.1063/1.2436869
10.1016/0021-9991(76)90041-3
10.1002/9780470753767
10.1021/j100540a008
10.1063/1.481811
10.11948/2015034
10.1038/s41598-017-00854-w
10.1109/TCBB.2016.2530066
10.1051/proc:2005001
10.1504/IJCBDD.2014.066542
10.1063/1.1810475
10.1063/1.1778376
10.1063/1.2354085
10.1016/j.ymgme.2017.12.183
10.1016/j.jcp.2016.04.056
10.1063/1.4922923
10.1063/1.4771660
10.1063/1.4927916
10.1063/1.1833357
10.1021/jp806431b
10.1021/jp993732q
10.1002/psp4.12304
10.1007/s10483-007-1009-y
10.3389/fams.2017.00006
10.1098/rsif.2008.0086.focus
10.1016/j.ces.2011.05.035
10.1007/978-3-540-24743-2_31
10.1063/1.1505860
10.1038/nature03232
10.1137/15M1024664
10.1063/1.4711143
10.1063/1.5016338
10.1063/1.4896985
10.1063/1.4928635
10.1038/118558a0
10.1007/s10543-015-0556-y
10.1063/1.1835951
10.1063/1.3154624
10.1063/1.2799998
10.1007/978-3-319-63113-4
10.1016/j.compbiolchem.2005.10.007
10.1007/b98885
10.1007/s11538-009-9467-x
10.1063/1.2919546
10.1186/1752-0509-5-26
10.1063/1.4905196
10.1016/0304-4149(78)90020-0
10.1063/1.2819665
10.1186/s12918-015-0176-9
10.1093/bioinformatics/btl465
10.1109/TCBB.2009.47
10.1007/978-3-540-25974-9_22
10.1016/j.jcp.2007.10.021
10.1063/1.2159468
10.1038/nbt1356
10.1073/pnas.6.7.410
10.1093/bioinformatics/bti308
10.1142/p1004
10.1063/1.2218339
10.1049/iet-syb:20060035
10.1214/12-AAP841
10.1073/pnas.162041399
10.1126/science.1070919
10.1063/1.3297948
10.1038/nbt1054
10.1137/130925657
10.1063/1.1992473
10.1016/S0168-9525(98)01659-X
10.1038/nature13476
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/wsbm.1459
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1939-005X
EndPage n/a
ExternalDocumentID 31260191
10_1002_wsbm_1459
WSBM1459
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
05W
1OC
1VH
33P
4.4
53G
5DZ
8-1
A00
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABQWH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
DCZOG
DRFUL
DRSTM
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
XV2
ZZTAW
~S-
0R~
AAMMB
AAYXX
AEFGJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
TEORI
NPM
7X8
ID FETCH-LOGICAL-c3539-9853ea2f31deecd9964889f28c51a53e1669e5c35e3c24545f069a28f2b8af983
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477368700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-5094
1939-005X
IngestDate Thu Jul 10 19:28:15 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Sat Nov 29 02:05:12 EST 2025
Tue Nov 18 22:00:50 EST 2025
Wed Jan 22 16:39:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords systems biology
hybrid stochastic simulation
stochastic simulation
computational
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-9853ea2f31deecd9964889f28c51a53e1669e5c35e3c24545f069a28f2b8af983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7891-5695
0000-0001-9043-7705
PMID 31260191
PQID 2250619424
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_2250619424
pubmed_primary_31260191
crossref_primary_10_1002_wsbm_1459
crossref_citationtrail_10_1002_wsbm_1459
wiley_primary_10_1002_wsbm_1459_WSBM1459
PublicationCentury 2000
PublicationDate November/December 2019
2019-11-00
2019-Nov
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November/December 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Wiley interdisciplinary reviews. Systems biology and medicine
PublicationTitleAlternate Wiley Interdiscip Rev Syst Biol Med
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2004; 121
2017; 7
2003; 119
2006; 30
2013; 4
2017; 3
1976; 22
2013; 23
2018; 123
2015; 142
2015; 143
2002; 99
2002; 117
1976
2005; 21
2009; 113
2008; 227
2011a
2008; 5
2017b; 146
2005; 23
2011; 111
1978; 6
2018; 7
2007; 28
2009; 10
1986; 43
2016; 317
2006; 22
1999; 15
2002; 106
2011; 66
2012; 136
2007; 1
2012; 137
2014; 7
2007; 24
2014; 12
2007; 25
2006; 125
2010; 72
2006; 124
2007; 126
2015; 56
2019; 9
2015; 5
2007; 127
1920; 6
2000; 113
2012
2002; 297
2005; 433
2006; 16
2018; 148
2016; 54
2009
2008
2017a; 14
2007
2008; 128
2005
2008; 10
2004
2009; 130
2015; 9
2011; 5
2011; 8
2014; 510
1977; 81
2011b; 4
2005; 122
2005; 123
2000; 104
1926; 118
2010; 132
2017
2016
2015
2014; 141
2001; 115
2005; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_90_1
Burden R. L. (e_1_2_7_13_1) 2016
e_1_2_7_73_1
e_1_2_7_94_1
Press W. H. (e_1_2_7_68_1) 2007
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
Ethier S. N. (e_1_2_7_25_1) 1986; 43
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Li H. (e_1_2_7_50_1) 2006; 16
References_xml – volume: 30
  start-page: 39
  issue: 1
  year: 2006
  end-page: 49
  article-title: The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior
  publication-title: Computational Biology and Chemistry
– year: 2009
– volume: 8
  start-page: 27
  issue: 1
  year: 2011
  end-page: 35
  article-title: Efficient formulations for exact stochastic simulation of chemical systems
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 113
  start-page: 297
  issue: 1
  year: 2000
  end-page: 306
  article-title: The chemical Langevin equation
  publication-title: The Journal of Chemical Physics
– volume: 5
  start-page: 26
  issue: 1
  year: 2011
  article-title: Integration of lipidomics and transcriptomics data towards a systems biology model of sphingolipid metabolism
  publication-title: BMC Systems Biology
– volume: 297
  start-page: 1183
  issue: 5584
  year: 2002
  end-page: 1186
  article-title: Stochastic gene expression in a single cell
  publication-title: Science
– volume: 143
  start-page: 184105
  issue: 18
  year: 2015
  article-title: A fast exact simulation algorithm for a class of markov jump processes
  publication-title: The Journal of Chemical Physics
– year: 2005
– volume: 6
  start-page: 410
  year: 1920
  end-page: 415
  article-title: Analytical note on certain rhythmic relations in organic systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  year: 2017
  article-title: Optimization algorithms for computational systems biology
  publication-title: Frontiers in Applied Mathematics and Statistics
– volume: 4
  start-page: 2297
  year: 2011b
  end-page: 2306
  article-title: Implicit second order weak Taylor tau‐leaping methods for the stochastic simulation of chemical kinetics
  publication-title: Procedia Computer Science
– volume: 142
  start-page: 244106
  issue: 24
  year: 2015
  article-title: On the rejection‐based algorithm for simulation and analysis of large‐scale reaction networks
  publication-title: The Journal of Chemical Physics
– volume: 22
  start-page: 403
  issue: 4
  year: 1976
  end-page: 434
  article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
  publication-title: Journal of Computational Physics
– volume: 148
  start-page: 064111
  issue: 6
  year: 2018
  article-title: Incorporating extrinsic noise into the stochastic simulation of biochemical reactions: A comparison of approaches
  publication-title: The Journal of Chemical Physics
– volume: 146
  start-page: 084107
  issue: 8
  year: 2017b
  article-title: Efficient stochastic simulation of biochemical reactions with noise and delays
  publication-title: The Journal of Chemical Physics
– volume: 130
  start-page: 244104
  issue: 24
  year: 2009
  article-title: A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks
  publication-title: The Journal of Chemical Physics
– volume: 113
  start-page: 1640
  issue: 6
  year: 2009
  end-page: 1644
  article-title: Deterministic limit of stochastic chemical kinetics
  publication-title: The Journal of Physical Chemistry B
– volume: 118
  start-page: 558
  year: 1926
  end-page: 560
  article-title: Fluctuations in the abundance of a species considered mathematically
  publication-title: Nature
– volume: 137
  start-page: 234110
  issue: 23
  year: 2012
  article-title: Variable time‐stepping in the pathwise numerical solution of the chemical Langevin equation
  publication-title: The Journal of Chemical Physics
– volume: 15
  start-page: 65
  issue: 2
  year: 1999
  end-page: 69
  article-title: It's a noisy business! Genetic regulation at the nanomolar scale
  publication-title: Trends in Genetics
– volume: 9
  start-page: 4322
  issue: 1
  year: 2019
  article-title: The 5‐formyltetrahydrofolate futile cycle reduces pathway stochasticity in an extended hybrid‐stochastic model of folate‐mediated one‐carbon metabolism
  publication-title: Scientific Reports
– volume: 7
  start-page: 341
  issue: 4
  year: 2014
  end-page: 357
  article-title: Adaptive tree‐based search for stochastic simulation algorithm
  publication-title: International Journal of Computational Biology and Drug Design
– volume: 124
  start-page: 044109
  issue: 5
  year: 2006
  article-title: Efficient step size selection for the tau‐leaping simulation method
  publication-title: The Journal of Chemical Physics
– start-page: 67
  year: 1976
  end-page: 78
– volume: 317
  start-page: 301
  year: 2016
  end-page: 317
  article-title: HRSSA—Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks
  publication-title: Journal of Computational Physics
– volume: 43
  start-page: 484
  year: 1986
  article-title: Markov processes: Characterization and
  publication-title: Convergence
– volume: 104
  start-page: 1876
  issue: 9
  year: 2000
  end-page: 1889
  article-title: Efficient exact stochastic simulation of chemical systems with many species and many channels
  publication-title: The Journal of Physical Chemistry A
– volume: 142
  start-page: 034118
  issue: 3
  year: 2015
  article-title: Adaptive hybrid simulations for multiscale stochastic reaction networks
  publication-title: The Journal of Chemical Physics
– volume: 22
  start-page: 2782
  issue: 22
  year: 2006
  end-page: 2789
  article-title: Dynamic partitioning for hybrid simulation of the bistable HIV‐1 transactivation network
  publication-title: Bioinformatics
– volume: 117
  start-page: 6959
  issue: 15
  year: 2002
  end-page: 6969
  article-title: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics
  publication-title: The Journal of Chemical Physics
– volume: 24
  start-page: 27
  issue: 1
  year: 2007
  end-page: 36
  article-title: Stochastic modeling and simulation of gene networks‐a review of the state‐of‐the‐art research on stochastic simulations
  publication-title: IEEE Signal Processing Magazine
– volume: 14
  start-page: 657
  issue: 3
  year: 2017a
  end-page: 667
  article-title: Efficient constant‐time complexity algorithm for stochastic simulation of large reaction networks
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 126
  start-page: 074102
  issue: 7
  year: 2007
  article-title: K‐leap method for accelerating stochastic simulation of coupled chemical reactions
  publication-title: The Journal of Chemical Physics
– volume: 81
  start-page: 2340
  issue: 25
  year: 1977
  end-page: 2361
  article-title: Exact stochastic simulation of coupled chemical reactions
  publication-title: The Journal of Physical Chemistry
– volume: 122
  start-page: 054103
  issue: 5
  year: 2005
  article-title: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions
  publication-title: The Journal of Chemical Physics
– volume: 111
  start-page: 6387
  issue: 10
  year: 2011
  end-page: 6422
  article-title: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics
  publication-title: Chemical Reviews
– volume: 10
  start-page: 53
  issue: 1
  year: 2008
  end-page: 64
  article-title: Biochemical simulations: Stochastic, approximate stochastic and hybrid approaches
  publication-title: Briefings in Bioinformatics
– volume: 28
  start-page: 1361
  issue: 10
  year: 2007
  end-page: 1371
  article-title: L‐leap: Accelerating the stochastic simulation of chemically reacting systems
  publication-title: Applied Mathematics and Mechanics
– year: 2008
– year: 2004
– volume: 132
  start-page: 044102
  issue: 4
  year: 2010
  article-title: A partial‐propensity variant of the composition‐rejection stochastic simulation algorithm for chemical reaction networks
  publication-title: The Journal of Chemical Physics
– volume: 7
  year: 2017
  article-title: Mechanistic interplay between ceramide and insulin resistance
  publication-title: Scientific Reports
– volume: 115
  start-page: 1716
  issue: 4
  year: 2001
  end-page: 1733
  article-title: Approximate accelerated stochastic simulation of chemically reacting systems
  publication-title: The Journal of Chemical Physics
– volume: 127
  start-page: 214107
  issue: 21
  year: 2007
  article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays
  publication-title: The Journal of Chemical Physics
– volume: 5
  start-page: S29
  issue: suppl_1
  year: 2008
  end-page: S39
  article-title: Quantitative approaches to the study of bistability in the lac operon of
  publication-title: Journal of the Royal Society Interface
– volume: 136
  start-page: 184101
  issue: 18
  year: 2012
  article-title: An adaptive stepsize method for the chemical Langevin equation
  publication-title: The Journal of Chemical Physics
– volume: 128
  start-page: 054103
  issue: 5
  year: 2008
  article-title: Incorporating postleap checks in tau‐leaping
  publication-title: The Journal of Chemical Physics
– volume: 23
  start-page: 529
  issue: 2
  year: 2013
  end-page: 583
  article-title: Separation of time‐scales and model reduction for stochastic reaction networks
  publication-title: The Annals of Applied Probability
– volume: 227
  start-page: 2455
  issue: 4
  year: 2008
  end-page: 2462
  article-title: Efficient kinetic Monte Carlo simulation
  publication-title: Journal of Computational Physics
– year: 2015
– volume: 25
  start-page: 1239
  issue: 11
  year: 2007
  end-page: 1249
  article-title: Executable cell biology
  publication-title: Nature Biotechnology
– volume: 9
  start-page: 47
  issue: 1
  year: 2015
  article-title: Computational modeling of sphingolipid metabolism
  publication-title: BMC Systems Biology
– volume: 123
  start-page: S73
  year: 2018
  end-page: S74
  article-title: Integrated quantitative systems pharmacology (QSP) model of lysosomal diseases provides an innovative computational platform to support research and therapeutic development for the sphingolipidoses
  publication-title: Molecular Genetics and Metabolism Systems Biology
– volume: 72
  start-page: 719
  issue: 3
  year: 2010
  end-page: 762
  article-title: From microscopic to macroscopic descriptions of cell migration on growing domains
  publication-title: Bulletin of Mathematical Biology
– volume: 56
  start-page: 189
  issue: 1
  year: 2015
  end-page: 239
  article-title: Multilevel hybrid chernoff tau‐leap
  publication-title: BIT Numerical Mathematics
– volume: 10
  start-page: 122
  issue: 2
  year: 2009
  end-page: 133
  article-title: Stochastic modelling for quantitative description of heterogeneous biological systems
  publication-title: Nature Reviews Genetics
– volume: 54
  start-page: 505
  issue: 2
  year: 2016
  end-page: 529
  article-title: Multilevel Monte Carlo for stochastic differential equations with additive small noise
  publication-title: SIAM Journal on Numerical Analysis
– volume: 6
  start-page: 223
  issue: 3
  year: 1978
  end-page: 240
  article-title: Strong approximation theorems for density dependent Markov chains
  publication-title: Stochastic Processes and their Applications
– year: 2007
– volume: 99
  start-page: 12795
  issue: 20
  year: 2002
  end-page: 12800
  article-title: Intrinsic and extrinsic contributions to stochasticity in gene expression
  publication-title: Proceedings of the National Academy of Sciences
– volume: 106
  start-page: 5063
  issue: 20
  year: 2002
  end-page: 5071
  article-title: The chemical Langevin and Fokker‐Planck equations for the reversible isomerization reaction
  publication-title: The Journal of Physical Chemistry A
– volume: 66
  start-page: 4059
  issue: 18
  year: 2011
  end-page: 4069
  article-title: Stochastic simulation of population balance models with disparate time scales: Hybrid strategies
  publication-title: Chemical Engineering Science
– volume: 119
  start-page: 8229
  issue: 16
  year: 2003
  end-page: 8234
  article-title: Improved lead‐size selection for accelerated stochastic simulation
  publication-title: The Journal of Chemical Physics
– volume: 16
  start-page: 1
  year: 2006
  end-page: 11
  article-title: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems
  publication-title: Journal of Chemical Physics
– volume: 119
  start-page: 12784
  issue: 24
  year: 2003
  end-page: 12794
  article-title: Stiffness in stochastic chemically reacting systems: The implicit tau‐leaping method
  publication-title: The Journal of Chemical Physics
– volume: 128
  start-page: 205101
  issue: 20
  year: 2008
  article-title: A constant‐time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks
  publication-title: The Journal of Chemical Physics
– year: 2016
– volume: 1
  start-page: 130
  issue: 2
  year: 2007
  end-page: 148
  article-title: Analysis of lactose metabolism in using reachability analysis of hybrid systems
  publication-title: IET Systems Biology
– volume: 14
  start-page: 1
  year: 2005
  end-page: 13
  article-title: Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems
  publication-title: ESAIM: Proceedings
– volume: 123
  start-page: 054104
  issue: 5
  year: 2005
  article-title: Avoiding negative populations in explicit Poisson tau‐leaping
  publication-title: The Journal of Chemical Physics
– volume: 510
  start-page: 68
  year: 2014
  end-page: 75
  article-title: Sphingolipid lysosomal storage disorders
  publication-title: Nature
– volume: 125
  start-page: 084103
  issue: 8
  year: 2006
  article-title: R‐leaping: Accelerating the stochastic simulation algorithm by reaction leaps
  publication-title: The Journal of Chemical Physics
– volume: 125
  start-page: 144107
  issue: 14
  year: 2006
  article-title: A partitioned leaping approach for multiscale modeling of chemical reaction dynamics
  publication-title: The Journal of Chemical Physics
– volume: 7
  start-page: 797
  issue: 1
  year: 2017
  article-title: A hybrid stochastic model of folate‐mediated one‐carbon metabolism: Effect of the common c677t mthfr variant on de novo thymidylate biosynthesis
  publication-title: Scientific Reports
– year: 2012
– volume: 121
  start-page: 10356
  issue: 21
  year: 2004
  end-page: 10364
  article-title: Binomial leap methods for simulating stochastic chemical kinetics
  publication-title: The Journal of Chemical Physics
– year: 2011a
– volume: 126
  start-page: 224101
  issue: 22
  year: 2007
  article-title: Adaptive explicit‐implicit tau‐leaping method with automatic tau selection
  publication-title: The Journal of Chemical Physics
– volume: 4
  start-page: 235
  issue: 1A
  year: 2013
  end-page: 241
  article-title: Automatic simulation of the chemical Langevin equation
  publication-title: Applied Mathematics
– volume: 121
  start-page: 4059
  issue: 9
  year: 2004
  end-page: 4067
  article-title: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems
  publication-title: The Journal of Chemical Physics
– volume: 21
  start-page: 2136
  issue: 9
  year: 2005
  end-page: 2137
  article-title: Time accelerated Monte Carlo simulations of biological networks using the binomial ‐leap method
  publication-title: Bioinformatics
– volume: 122
  start-page: 024412
  issue: 2
  year: 2005
  article-title: Binomial distribution based ‐leap accelerated stochastic simulation
  publication-title: The Journal of Chemical Physics
– volume: 143
  start-page: 054104
  issue: 5
  year: 2015
  article-title: Simulation of biochemical reactions with time‐dependent rates by the rejection‐based algorithm
  publication-title: The Journal of Chemical Physics
– volume: 23
  start-page: 131
  issue: 1
  year: 2005
  end-page: 136
  article-title: Automatic generation of cellular reaction networks with Moleculizer 1.0
  publication-title: Nature Biotechnology
– volume: 7
  start-page: 442
  year: 2018
  end-page: 452
  article-title: Quantitative systems pharmacology modeling of acid sphingomyelinase deficiency and the enzyme replacement therapy olipudase alfa is an innovative tool for linking pathophysiology and pharmacology
  publication-title: CPT Pharmacometrics & Systems Pharmacology
– volume: 141
  start-page: 134116
  issue: 13
  year: 2014
  article-title: Efficient rejection‐based simulation of biochemical reactions with stochastic noise and delays
  publication-title: The Journal of Chemical Physics
– volume: 143
  start-page: 074108
  issue: 7
  year: 2015
  article-title: Constant‐complexity stochastic simulation algorithm with optimal binning
  publication-title: The Journal of Chemical Physics
– volume: 12
  start-page: 581
  issue: 2
  year: 2014
  end-page: 615
  article-title: Hybrid chernoff tau‐leap
  publication-title: Multiscale Modeling and Simulation
– volume: 5
  start-page: 420
  issue: 3
  year: 2015
  end-page: 452
  article-title: Implicit simulation methods for stochastic chemical kinetics
  publication-title: Journal of Applied Analysis and Computation
– year: 2017
– volume: 433
  start-page: 425
  year: 2005
  end-page: 430
  article-title: Simulation and validation of modelled sphingolipid metabolism in
  publication-title: Nature
– ident: e_1_2_7_19_1
  doi: 10.1063/1.2745299
– ident: e_1_2_7_61_1
  doi: 10.1038/s41598-019-40230-4
– ident: e_1_2_7_86_1
  doi: 10.1145/2245276.2232001
– ident: e_1_2_7_65_1
  doi: 10.1093/bib/bbn050
– ident: e_1_2_7_48_1
  doi: 10.1007/BFb0120765
– ident: e_1_2_7_77_1
  doi: 10.1109/WSC.2009.5429309
– ident: e_1_2_7_90_1
  doi: 10.1063/1.4976703
– ident: e_1_2_7_93_1
  doi: 10.1038/nrg2509
– ident: e_1_2_7_15_1
  doi: 10.1109/MSP.2007.273051
– ident: e_1_2_7_51_1
  doi: 10.1063/1.4934972
– ident: e_1_2_7_3_1
– ident: e_1_2_7_43_1
  doi: 10.4236/am.2013.41A036
– ident: e_1_2_7_31_1
  doi: 10.1063/1.1378322
– ident: e_1_2_7_32_1
  doi: 10.1021/jp0128832
– ident: e_1_2_7_4_1
  doi: 10.1016/j.procs.2011.04.250
– ident: e_1_2_7_34_1
  doi: 10.1063/1.1613254
– ident: e_1_2_7_59_1
  doi: 10.1021/cr2002917
– ident: e_1_2_7_73_1
  doi: 10.1063/1.1627296
– ident: e_1_2_7_74_1
  doi: 10.1038/srep41231
– ident: e_1_2_7_16_1
  doi: 10.1063/1.2436869
– ident: e_1_2_7_28_1
  doi: 10.1016/0021-9991(76)90041-3
– ident: e_1_2_7_14_1
  doi: 10.1002/9780470753767
– ident: e_1_2_7_29_1
  doi: 10.1021/j100540a008
– ident: e_1_2_7_30_1
  doi: 10.1063/1.481811
– ident: e_1_2_7_2_1
  doi: 10.11948/2015034
– ident: e_1_2_7_60_1
  doi: 10.1038/s41598-017-00854-w
– ident: e_1_2_7_89_1
  doi: 10.1109/TCBB.2016.2530066
– ident: e_1_2_7_21_1
– volume: 16
  start-page: 1
  year: 2006
  ident: e_1_2_7_50_1
  article-title: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems
  publication-title: Journal of Chemical Physics
– ident: e_1_2_7_5_1
  doi: 10.1051/proc:2005001
– ident: e_1_2_7_87_1
  doi: 10.1504/IJCBDD.2014.066542
– ident: e_1_2_7_91_1
  doi: 10.1063/1.1810475
– ident: e_1_2_7_20_1
  doi: 10.1063/1.1778376
– ident: e_1_2_7_38_1
  doi: 10.1063/1.2354085
– ident: e_1_2_7_46_1
  doi: 10.1016/j.ymgme.2017.12.183
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jcp.2016.04.056
– ident: e_1_2_7_88_1
  doi: 10.1063/1.4922923
– ident: e_1_2_7_41_1
  doi: 10.1063/1.4771660
– ident: e_1_2_7_84_1
  doi: 10.1063/1.4927916
– ident: e_1_2_7_23_1
  doi: 10.1063/1.1833357
– ident: e_1_2_7_33_1
  doi: 10.1021/jp806431b
– ident: e_1_2_7_27_1
  doi: 10.1021/jp993732q
– ident: e_1_2_7_45_1
  doi: 10.1002/psp4.12304
– ident: e_1_2_7_66_1
  doi: 10.1007/s10483-007-1009-y
– ident: e_1_2_7_75_1
  doi: 10.3389/fams.2017.00006
– ident: e_1_2_7_79_1
  doi: 10.1098/rsif.2008.0086.focus
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ces.2011.05.035
– ident: e_1_2_7_64_1
  doi: 10.1007/978-3-540-24743-2_31
– ident: e_1_2_7_39_1
  doi: 10.1063/1.1505860
– ident: e_1_2_7_6_1
  doi: 10.1038/nature03232
– ident: e_1_2_7_9_1
  doi: 10.1137/15M1024664
– ident: e_1_2_7_42_1
  doi: 10.1063/1.4711143
– ident: e_1_2_7_83_1
  doi: 10.1063/1.5016338
– ident: e_1_2_7_85_1
  doi: 10.1063/1.4896985
– ident: e_1_2_7_78_1
  doi: 10.1063/1.4928635
– ident: e_1_2_7_92_1
  doi: 10.1038/118558a0
– ident: e_1_2_7_63_1
  doi: 10.1007/s10543-015-0556-y
– ident: e_1_2_7_76_1
  doi: 10.1063/1.1835951
– ident: e_1_2_7_71_1
  doi: 10.1063/1.3154624
– ident: e_1_2_7_7_1
  doi: 10.1063/1.2799998
– ident: e_1_2_7_55_1
  doi: 10.1007/978-3-319-63113-4
– ident: e_1_2_7_58_1
  doi: 10.1016/j.compbiolchem.2005.10.007
– ident: e_1_2_7_70_1
  doi: 10.1007/b98885
– ident: e_1_2_7_11_1
  doi: 10.1007/s11538-009-9467-x
– ident: e_1_2_7_81_1
  doi: 10.1063/1.2919546
– ident: e_1_2_7_36_1
  doi: 10.1186/1752-0509-5-26
– ident: e_1_2_7_40_1
  doi: 10.1063/1.4905196
– ident: e_1_2_7_49_1
  doi: 10.1016/0304-4149(78)90020-0
– ident: e_1_2_7_8_1
  doi: 10.1063/1.2819665
– ident: e_1_2_7_94_1
  doi: 10.1186/s12918-015-0176-9
– ident: e_1_2_7_35_1
  doi: 10.1093/bioinformatics/btl465
– ident: e_1_2_7_56_1
  doi: 10.1109/TCBB.2009.47
– volume: 43
  start-page: 484
  year: 1986
  ident: e_1_2_7_25_1
  article-title: Markov processes: Characterization and
  publication-title: Convergence
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-540-25974-9_22
– ident: e_1_2_7_80_1
  doi: 10.1016/j.jcp.2007.10.021
– ident: e_1_2_7_18_1
  doi: 10.1063/1.2159468
– ident: e_1_2_7_26_1
  doi: 10.1038/nbt1356
– ident: e_1_2_7_53_1
  doi: 10.1073/pnas.6.7.410
– ident: e_1_2_7_22_1
  doi: 10.1093/bioinformatics/bti308
– ident: e_1_2_7_69_1
  doi: 10.1142/p1004
– ident: e_1_2_7_10_1
  doi: 10.1063/1.2218339
– ident: e_1_2_7_37_1
  doi: 10.1049/iet-syb:20060035
– ident: e_1_2_7_47_1
  doi: 10.1214/12-AAP841
– volume-title: Numerical recipes 3rd edition: The art of scientific computing
  year: 2007
  ident: e_1_2_7_68_1
– ident: e_1_2_7_82_1
  doi: 10.1073/pnas.162041399
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1070919
– volume-title: Numerical analysis
  year: 2016
  ident: e_1_2_7_13_1
– ident: e_1_2_7_72_1
  doi: 10.1063/1.3297948
– ident: e_1_2_7_52_1
  doi: 10.1038/nbt1054
– ident: e_1_2_7_62_1
  doi: 10.1137/130925657
– ident: e_1_2_7_17_1
  doi: 10.1063/1.1992473
– ident: e_1_2_7_57_1
  doi: 10.1016/S0168-9525(98)01659-X
– ident: e_1_2_7_67_1
  doi: 10.1038/nature13476
SSID ssj0065499
Score 2.298533
SecondaryResourceType review_article
Snippet Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1459
SubjectTerms computational
hybrid stochastic simulation
stochastic simulation
systems biology
Title Stochastic simulation algorithms for computational systems biology: Exact, approximate, and hybrid methods
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwsbm.1459
https://www.ncbi.nlm.nih.gov/pubmed/31260191
https://www.proquest.com/docview/2250619424
Volume 11
WOSCitedRecordID wos000477368700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-005X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065499
  issn: 1939-5094
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7B0kpcePQBy0sGceihEYmdhw0nXqseAKEC6t4ix7G7i9gs2gQE_55xnGyFaCWk3hJlYlkez8xnW_4-gF30M0-ygHsm8n0vVH7o8YwHHpa63KgsirVvarGJ5OKC9_vicgYO2rswjh9iuuFmI6PO1zbAZVbu_SENxRQwwjiPxCzMUZy3YQfmTn72bs7aRBzbpY87VBae5YlriYV8ujf9-XU5eoMxX0PWuub0Fv-rt0uw0EBNcujmxjLM6OITfHTik8-f4faqGquBtDzNpByOGhkvIu9-jyfDajAqCeJZomrVh2bHkDje55I01E375PRJquo7qZnJn4aIfjW-FDkZPNubYMTpU5df4KZ3en38w2uUFzzFIhwtgUVcS2pYkGutclwTYZwLQ7mKAomfgjgWOkJbzRQNEYQZPxaSckMzLo3g7Ct0inGhV4Fohm5nLMlprXYWCMNCwUVusJmEKdmFb60DUtXQklt1jLvUESrT1A5daoeuCztT03vHxfE3o-3WiylGij3-kIUeP5QpZi7f7tnQsAsrzr3TZlhgqdVEgL2pvfjv9tNfV0fn9mHt_abrMI84S7grjBvQqSYPehM-qMdqWE62YDbp861m8r4Atc_zKA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BGRovDBgfZQM8xAMPi0jsJLWnvWyMCkSppgFa3yLXsdcimk5NOpX_fuc46YQG0qS9JcrFsu58Hz7Lvx_AEdqZt_oB90zk-16o_NDjfR54mOpSo_pRrH1Tkk20ul3e64mvC_Cxvgvj8CHmDTfrGWW8tg5uG9Inf1BDMQaM0NEjsQhLIS6jqAFLX761bzt1JI7t3sedKgvPAsXVyEI-PZn__Dgf_VVkPq5Zy6TTfvV_012D1arYJJ_c6liHBZ1twLKjn3x4DXfXxVgNpEVqJvlwVBF5EXn_YzwZFoNRTrCiJarkfah6hsQhP-ekAm_6QM5mUhXvSYlNPhti_avxJUvJ4MHeBSOOoTrfhNv22c3puVdxL3iKRagugWlcS2pYkGqtUtwVoacLQ7mKAomfgjgWOkJZzRQNsQwzfiwk5Yb2uTSCsy1oZONM7wDRDA3PWCulJd9ZIAwLBRepwWFaTMkmHNcWSFQFTG75Me4TB6lME6u6xKquCYdz0Z8OjeMpoXe1GRP0FXsAIjM9nuYJxi7fdm1o2IRtZ9_5MCyw4GoiwNmUZnx-_OT79ecr-7D776IH8PL85qqTdC66l29gBasu4S40voVGMZnqPXihfhXDfLJfreHfgqn2MA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKBWX0vLcQsFFHDgQkdhJ1kZceK2KSleIh9hb5HXs7iI2izahgn_fcZxshaASEpcoUSaW5cnMfLbl7wPYQj_zZjfgnol83wuVH3q8ywMPS11qVDeKtW9KsYlmu807HXE-Afv1WRjHDzFecLORUeZrG-D6PjW7_1hDMQcMMNAjMQnTeI0xLKePL1rXZ3Umju3cx-0qC88SxdXMQj7dHX_8vB69AJnPMWtZdFpz7-vuZ_hUgU1y4P6OLzChs3mYcfKTTwtwe1kMVU9apmaS9weVkBeRd7-Ho37RG-QEES1Rpe5DtWZIHPNzTirypj1y8ihVsUNKbvLHPuJfjQ9ZSnpP9iwYcQrV-SJct06ujn54lfaCp1iEwyWwjGtJDQtSrVWKsyKMdGEoV1Eg8VUQx0JHaKuZoiHCMOPHQlJuaJdLIzhbgqlsmOkVIJqh4xlrprTUOwuEYaHgIjXYTJMp2YDt2gOJqojJrT7GXeIolWlihy6xQ9eAzbHpvWPjeM3oe-3GBGPFboDITA8f8gRzl29XbWjYgGXn33EzLLDkaiLA3pRu_H_7yc3l4S978_Xtphvw8fy4lZydtn-uwiyCLuHOM67BVDF60N_gg_pT9PPRevUL_wUdlfWr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+simulation+algorithms+for+computational+systems+biology%3A+Exact%2C+approximate%2C+and+hybrid+methods&rft.jtitle=Wiley+interdisciplinary+reviews.+Systems+biology+and+medicine&rft.au=Simoni%2C+Giulia&rft.au=Reali%2C+Federico&rft.au=Priami%2C+Corrado&rft.au=Marchetti%2C+Luca&rft.date=2019-11-01&rft.issn=1939-005X&rft.eissn=1939-005X&rft.volume=11&rft.issue=6&rft.spage=e1459&rft_id=info:doi/10.1002%2Fwsbm.1459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5094&client=summon