The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies

Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine Jg. 43; H. 26; S. 4928 - 4983
Hauptverfasser: Liu, Yuwen, Ren, Jie, Ma, Shuangge, Wu, Cen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 20.11.2024
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0277-6715, 1097-0258, 1097-0258
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high‐dimensional genomics data, we propose the spike‐and‐slab quantile LASSO through a fully Bayesian spike‐and‐slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self‐adaptivity to the sparsity pattern from the spike‐and‐slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431–444). Furthermore, the spike‐and‐slab quantile LASSO has a computational advantage to locate the posterior modes via soft‐thresholding rule guided Expectation‐Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy‐tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike‐and‐slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).
AbstractList Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).
Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).
Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high‐dimensional genomics data, we propose the spike‐and‐slab quantile LASSO through a fully Bayesian spike‐and‐slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self‐adaptivity to the sparsity pattern from the spike‐and‐slab LASSO (Roc̆ková and George, J Am Stat Associat , 2018, 113(521): 431–444). Furthermore, the spike‐and‐slab quantile LASSO has a computational advantage to locate the posterior modes via soft‐thresholding rule guided Expectation‐Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy‐tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike‐and‐slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).
Author Ren, Jie
Wu, Cen
Liu, Yuwen
Ma, Shuangge
Author_xml – sequence: 1
  givenname: Yuwen
  surname: Liu
  fullname: Liu, Yuwen
  organization: Kansas State University
– sequence: 2
  givenname: Jie
  surname: Ren
  fullname: Ren, Jie
  organization: Indiana University School of Medicine
– sequence: 3
  givenname: Shuangge
  orcidid: 0000-0001-9001-4999
  surname: Ma
  fullname: Ma, Shuangge
  organization: Yale University
– sequence: 4
  givenname: Cen
  orcidid: 0000-0002-5172-141X
  surname: Wu
  fullname: Wu, Cen
  email: wucen@ksu.edu
  organization: Kansas State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39260448$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUhS1EBQPtgheoLHVTFin-ieN4iVChSFOxGLqtZTs31DSxBztpxY5H4Bl5kprOsEHt5vpK_s7R1TkHaDfEAAgdUfKJEsJOsh_LQlWzgxaUKFkRJtpdtCBMyqqRVOyjg5xvCaFUMLmH9rliDanrdoG-X_8AnNf-Jzw9PJrQlZkHY_HdbMLkB8DL09XqCvcx4RTtnCf8yyRvbPnJMICbfAzYB-xMcJDwDYQ4epdxnubOQ36L3vRmyPBu-x6ib-efr8--VMuri8uz02XluOBNZQU10oIkvFEd66SQtTBUOQYCurqWtFWmF9Yq3gHrCShmnXOsMb3hvFU1P0QfN77rFO9myJMefXYwDCZAnLPmlPC6FpyJgn54hd7GOYVyXaFKhlTQpi3U-y012xE6vU5-NOlevyRXgJMN4FLMOUGvnZ_McxxTMn7QlOjnbnTpRv_tpiiOXyleTP_Fbt1_lw7u_w_q1eXXjeIPQMme0A
CitedBy_id crossref_primary_10_3390_e26090794
Cites_doi 10.1038/onc.2011.611
10.1093/bioinformatics/btx300
10.1002/(SICI)1097-0142(20000201)88:3<589::AID-CNCR15>3.0.CO;2-I
10.1111/insr.12114
10.1016/j.csda.2012.07.015
10.1111/j.1541-0420.2011.01652.x
10.1021/cb5001907
10.1111/j.1467-9868.2008.00674.x
10.1038/ng.3762
10.1080/10618600.2014.913516
10.1158/2159-8290.CD-12-0095
10.1093/hmg/11.6.641
10.1016/S0167-7152(02)00040-8
10.1007/978-1-0716-0947-7_13
10.1111/rssb.12388
10.1111/j.2517-6161.1996.tb02080.x
10.1111/biom.13670
10.1002/art.41493
10.1186/s12964-021-00737-8
10.1016/j.jmva.2018.06.009
10.1007/s11222-022-10137-8
10.1049/iet-syb.2018.5040
10.2307/1913643
10.1146/annurev-statistics-031017-100438
10.1080/01621459.1993.10476353
10.1093/bib/bbu046
10.1093/bioinformatics/btac416
10.1136/ard.2006.066068
10.1214/09-BA403
10.1093/biostatistics/kxab038
10.1016/S0167-7152(01)00124-9
10.1214/10-BA521
10.3390/ht8010004
10.1080/01621459.2016.1260469
10.1214/07-AOS507
10.1042/BJ20110166
10.1002/gepi.22194
10.1111/j.1467-9868.2010.00764.x
10.1198/106186008X289155
10.1080/01621459.2022.2025815
10.1080/00949655.2015.1014372
10.1214/12-BA703
10.1016/j.csda.2023.107808
10.3389/fgene.2021.667074
10.1198/073500106000000251
10.1080/01621459.2012.656014
10.1002/sim.6287
10.1080/00949655.2010.496117
10.1534/genetics.116.192195
10.1198/016214508000000337
10.1186/1471-2164-11-517
10.18637/jss.v033.i01
10.1016/j.biopha.2018.05.055
10.1111/pcmr.12945
10.1214/19-AOAS1269
10.1093/nar/gky1019
10.1038/ng.3564
10.14740/wjon1349
10.3390/e25091310
10.1198/016214506000000735
10.1214/10-BA507
10.1111/j.1541-0420.2010.01457.x
10.3390/cancers15041097
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.10196
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4983
ExternalDocumentID 39260448
10_1002_sim_10196
SIM10196
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Johnson Cancer Research Center at Kansas State University: The Innovative Research Award
– fundername: National Institutes of Health
  funderid: CA204120; CA121974; CA196530
– fundername: NCI NIH HHS
  grantid: R01 CA204120
– fundername: NCI NIH HHS
  grantid: P50 CA196530
– fundername: NIH HHS
  grantid: CA121974
– fundername: NCI NIH HHS
  grantid: P50 CA121974
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIH HHS
  grantid: CA204120
– fundername: NIH HHS
  grantid: CA196530
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
EBD
EMOBN
O8X
SV3
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3536-b51a7be70369d2d75745a19c2e5ed447189af5bb93de2f0e92bccc26afa338943
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001309686400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 10:34:51 EDT 2025
Tue Oct 07 05:14:06 EDT 2025
Sat Nov 22 01:41:03 EST 2025
Sat Nov 29 05:32:50 EST 2025
Tue Nov 18 22:04:15 EST 2025
Wed Jan 22 17:13:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords expectation‐maximization (EM) algorithm
robust variable selection
quantile LASSO
regularized Bayesian quantile regression
spike‐and‐slab prior
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3536-b51a7be70369d2d75745a19c2e5ed447189af5bb93de2f0e92bccc26afa338943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9001-4999
0000-0002-5172-141X
PMID 39260448
PQID 3119615168
PQPubID 48361
PageCount 56
ParticipantIDs proquest_miscellaneous_3103445325
proquest_journals_3119615168
pubmed_primary_39260448
crossref_citationtrail_10_1002_sim_10196
crossref_primary_10_1002_sim_10196
wiley_primary_10_1002_sim_10196_SIM10196
PublicationCentury 2000
PublicationDate 20 November 2024
PublicationDateYYYYMMDD 2024-11-20
PublicationDate_xml – month: 11
  year: 2024
  text: 20 November 2024
  day: 20
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 11
2023; 79
2011; 439
2017; 49
2018; 168
2019; 13
2000; 88
2002; 57
2002; 11
2008; 36
2023; 1
2008; 103
2008; 70
2021; 73
1978
2023; 24
2023; 25
2018; 5
2021; 34
2013; 57
2017; 33
2015; 85
2011; 73
2016; 84
2011; 67
2022; 32
2012; 27
2014; 9
2012; 68
2009; 19
2010; 5
2007; 66
2016; 48
2022; 38
2007; 25
2017; 205
2001; 54
2019; 8
2010; 33
2015; 16
2012
2023; 15
1993; 88
2020; 82
2011; 81
2018; 104
2008; 17
2009
1996; 58
2012; 107
2012; 31
2015; 24
2012; 2
2021; 12
2020; 2020
2023
2021
2019; 43
2010; 06
2018; 113
2021; 19
2019; 47
2013
2009; 4
2020; 21
2023; 118
2006; 101
2014; 33
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Wu Y (e_1_2_9_41_1) 2009; 19
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
Sherwood B (e_1_2_9_45_1) 2023
e_1_2_9_54_1
Carvalho CM (e_1_2_9_29_1) 2009
e_1_2_9_71_1
Kepplinger D (e_1_2_9_15_1) 2021
e_1_2_9_14_1
e_1_2_9_39_1
Johndrow J (e_1_2_9_18_1) 2020; 21
e_1_2_9_16_1
e_1_2_9_58_1
Huang J (e_1_2_9_63_1) 2012; 27
e_1_2_9_64_1
Casella G (e_1_2_9_37_1) 2010; 06
e_1_2_9_20_1
Wang HJ (e_1_2_9_43_1) 2009
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_60_1
Wang T (e_1_2_9_73_1) 2020; 2020
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Alfons A (e_1_2_9_6_1) 2013
e_1_2_9_70_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
References_xml – volume: 5
  start-page: 533
  issue: 3
  year: 2010
  end-page: 556
  article-title: Bayesian regularized quantile regression
  publication-title: Bayesian Anal
– volume: 24
  start-page: 676
  issue: 3
  year: 2015
  end-page: 694
  article-title: An iterative coordinate descent algorithm for high‐dimensional nonconvex penalized quantile regression
  publication-title: J Comput Graph Stat
– volume: 06
  start-page: 369
  issue: 2
  year: 2010
  end-page: 411
  article-title: Penalized regression, standard errors, and Bayesian lassos
  publication-title: Bayesian Anal
– volume: 118
  start-page: 2013
  issue: 543
  year: 2023
  end-page: 2028
  article-title: Bayesian bootstrap spike‐and‐slab lasso
  publication-title: J Am Stat Assoc
– start-page: 33
  year: 1978
  end-page: 50
  article-title: Regression quantiles
  publication-title: Econometrica
– volume: 16
  start-page: 873
  issue: 5
  year: 2015
  end-page: 883
  article-title: A selective review of robust variable selection with applications in bioinformatics
  publication-title: Brief Bioinform
– volume: 19
  start-page: 56
  issue: 1
  year: 2021
  article-title: The emerging role of the KCTD proteins in cancer
  publication-title: Cell Commun Signal
– volume: 84
  start-page: 327
  issue: 3
  year: 2016
  end-page: 344
  article-title: Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood
  publication-title: Int Stat Rev
– volume: 34
  start-page: 853
  issue: 5
  year: 2021
  end-page: 868
  article-title: Connexins in melanoma: potential role of cx46 in its aggressiveness
  publication-title: Pigment Cell Melanoma Res
– volume: 70
  start-page: 849
  issue: 5
  year: 2008
  end-page: 911
  article-title: Sure independence screening for ultrahigh dimensional feature space
  publication-title: J Royal Stat Soc B Stat Methodol
– year: 2023
  article-title: The Bayesian regularized quantile varying coefficient model
  publication-title: Comput Stat Data Analy
– volume: 15
  start-page: 1097
  issue: 4
  year: 2023
  article-title: Similarities and differences in the protein composition of cutaneous melanoma cells and their exosomes identified by mass spectrometry
  publication-title: Cancer
– volume: 48
  start-page: 607
  issue: 6
  year: 2016
  end-page: 616
  article-title: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas
  publication-title: Nat Genet
– volume: 17
  start-page: 163
  issue: 1
  year: 2008
  end-page: 185
  article-title: L 1‐norm quantile regression
  publication-title: J Comput Graph Stat
– volume: 85
  start-page: 3744
  issue: 18
  year: 2015
  end-page: 3754
  article-title: Bayesian composite quantile regression
  publication-title: J Stat Comput Simul
– volume: 8
  start-page: 4
  issue: 1
  year: 2019
  article-title: A selective review of multi‐level omics data integration using variable selection
  publication-title: High‐throughput
– volume: 439
  start-page: 113
  issue: 1
  year: 2011
  end-page: 128
  article-title: Disrupted in renal carcinoma 2 (dirc2), a novel transporter of the lysosomal membrane, is proteolytically processed by Cathepsin l
  publication-title: Biochem J
– start-page: 3841
  year: 2009
  end-page: 3866
  article-title: Quantile regression in partially linear varying coefficient models
  publication-title: Ann Stat
– volume: 82
  start-page: 1273
  issue: 5
  year: 2020
  end-page: 1300
  article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping
  publication-title: J Royal Stat Soc B Stat Methodol
– volume: 68
  start-page: 316
  issue: 1
  year: 2012
  end-page: 326
  article-title: High‐dimensional heteroscedastic regression with an application to EQTL data analysis
  publication-title: Biometrics
– volume: 31
  start-page: 4567
  issue: 42
  year: 2012
  end-page: 4576
  article-title: Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling
  publication-title: Oncogene
– volume: 9
  start-page: 1340
  issue: 6
  year: 2014
  end-page: 1350
  article-title: Inositol phosphate recycling regulates glycolytic and lipid metabolism that drives cancer aggressiveness
  publication-title: ACS Chem Biol
– volume: 24
  start-page: 425
  issue: 2
  year: 2023
  end-page: 442
  article-title: Bayesian finite mixture of regression analysis for cancer based on histopathological imaging–environment interactions
  publication-title: Biostatistics
– volume: 2
  start-page: 401
  issue: 5
  year: 2012
  end-page: 404
  article-title: The CBIO cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
– volume: 103
  start-page: 681
  issue: 482
  year: 2008
  end-page: 686
  article-title: The Bayesian lasso
  publication-title: J Am Stat Assoc
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
– volume: 88
  start-page: 881
  issue: 423
  year: 1993
  end-page: 889
  article-title: Variable selection via Gibbs sampling
  publication-title: J Am Stat Assoc
– volume: 4
  start-page: 85
  issue: 1
  year: 2009
  end-page: 117
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Anal
– volume: 49
  start-page: 457
  issue: 3
  year: 2017
  end-page: 464
  article-title: Biallelic mutations in the 3' exonuclease toe1 cause pontocerebellar hypoplasia and uncover a role in SNRNA processing
  publication-title: Nat Genet
– start-page: 73
  year: 2009
  end-page: 80
– volume: 47
  start-page: 391
  issue: 1
  year: 2019
  end-page: 405
  article-title: Toe1 acts as a 3' exonuclease for telomerase RNA and regulates telomere maintenance
  publication-title: Nucleic Acids Res
– start-page: 191
  year: 2021
  end-page: 223
  article-title: Gene–environment interaction: a variable selection perspective
  publication-title: Epistasis Methods Protocols
– volume: 21
  start-page: 1
  issue: 73
  year: 2020
  end-page: 61
  article-title: Scalable approximate MCMC algorithms for the horseshoe prior
  publication-title: J Mach Learn Res
– volume: 13
  start-page: 2065
  issue: 4
  year: 2019
  end-page: 2090
  article-title: Robust elastic net estimators for variable selection and identification of proteomic biomarkers
  publication-title: Ann Appl Stat
– volume: 33
  start-page: 2799
  issue: 18
  year: 2017
  end-page: 2807
  article-title: The spike‐and‐slab lasso cox model for survival prediction and associated genes detection
  publication-title: Bioinformatics
– volume: 104
  start-page: 788
  year: 2018
  end-page: 797
  article-title: Hydrogen gas inhibits lung cancer progression through targeting SMC3
  publication-title: Biomed Pharmacother
– start-page: 226
  year: 2013
  end-page: 248
  article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets
  publication-title: Ann Appl Stat
– volume: 73
  start-page: 325
  issue: 3
  year: 2011
  end-page: 349
  article-title: Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection
  publication-title: J Royal Stat Soc B Stat Methodol
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc B Methodol
– volume: 81
  start-page: 1565
  issue: 11
  year: 2011
  end-page: 1578
  article-title: Gibbs sampling methods for Bayesian quantile regression
  publication-title: J Stat Comput Simul
– volume: 25
  start-page: 1310
  issue: 9
  year: 2023
  article-title: Adaptive MCMC for Bayesian variable selection in generalised linear models and survival models
  publication-title: Entropy
– volume: 54
  start-page: 437
  issue: 4
  year: 2001
  end-page: 447
  article-title: Bayesian quantile regression
  publication-title: Stat Probab Lett
– volume: 13
  start-page: 69
  issue: 2
  year: 2019
  end-page: 76
  article-title: Micrornas and their target MRNAS as potential biomarkers among smokers and non‐smokers with lung adenocarcinoma
  publication-title: IET Syst Biol
– volume: 36
  start-page: 1108
  issue: 3
  year: 2008
  end-page: 1126
  article-title: Composite quantile regression and the oracle model selection theory
  publication-title: Ann Stat
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  end-page: 10
  article-title: A robust penalized method for the analysis of noisy DNA copy number data
  publication-title: BMC Genomics
– volume: 12
  start-page: 7
  issue: 1
  year: 2021
  article-title: Cutaneous malignant melanoma: A review of early diagnosis and management
  publication-title: World J Oncol
– volume: 25
  start-page: 347
  issue: 3
  year: 2007
  end-page: 355
  article-title: Robust regression shrinkage and consistent variable selection through the lad‐lasso
  publication-title: J Bus Econ Stat
– volume: 38
  start-page: 3918
  issue: 16
  year: 2022
  end-page: 3926
  article-title: Variational Bayes for high‐dimensional proportional hazards models with applications within gene expression
  publication-title: Bioinformatics
– volume: 5
  start-page: 141
  year: 2018
  end-page: 167
  article-title: Toward integrative Bayesian analysis in molecular biology
  publication-title: Annu Rev Stat Appl
– volume: 88
  start-page: 589
  issue: 3
  year: 2000
  end-page: 595
  article-title: Breslow thickness and Clark level in melanoma: support for including level in pathology reports and in American joint committee on cancer staging
  publication-title: Cancer
– volume: 27
  issue: 4
  year: 2012
  article-title: A selective review of group selection in high‐dimensional models
  publication-title: Stat Sci Rev J Inst Math Stat
– volume: 32
  start-page: 84
  issue: 5
  year: 2022
  article-title: Adaptive random neighbourhood informed Markov chain Monte Carlo for high‐dimensional Bayesian variable selection
  publication-title: Stat Comput
– volume: 57
  start-page: 435
  issue: 1
  year: 2013
  end-page: 449
  article-title: Variable selection in quantile varying coefficient models with longitudinal data
  publication-title: Comput Stat Data Analy
– volume: 19
  start-page: 801
  issue: 2
  year: 2009
  end-page: 817
  article-title: Variable selection in quantile regression
  publication-title: Stat Sin
– volume: 5
  start-page: 171
  issue: 1
  year: 2010
  end-page: 188
  article-title: Inference with normal‐gamma prior distributions in regression problems
  publication-title: Bayesian Anal
– volume: 57
  start-page: 43
  issue: 1
  year: 2002
  end-page: 52
  article-title: An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution
  publication-title: Stat Probab Lett
– year: 2012
– volume: 11
  start-page: 641
  issue: 6
  year: 2002
  end-page: 649
  article-title: Disruption of a novel MFS transporter gene, Dirc2, by a familial renal cell carcinoma‐associated t (2; 3)(q35; q21)
  publication-title: Hum Mol Genet
– volume: 79
  start-page: 684
  issue: 2
  year: 2023
  end-page: 694
  article-title: Robust Bayesian variable selection for gene–environment interactions
  publication-title: Biometrics
– volume: 113
  start-page: 431
  issue: 521
  year: 2018
  end-page: 444
  article-title: The spike‐and‐slab Lasso
  publication-title: J Am Stat Assoc
– volume: 43
  start-page: 276
  issue: 3
  year: 2019
  end-page: 291
  article-title: Robust network‐based regularization and variable selection for high‐dimensional genomic data in cancer prognosis
  publication-title: Genet Epidemiol
– volume: 168
  start-page: 119
  year: 2018
  end-page: 130
  article-title: Robust network‐based analysis of the associations between (epi) genetic measurements
  publication-title: J Multivar Anal
– volume: 205
  start-page: 77
  issue: 1
  year: 2017
  end-page: 88
  article-title: The spike‐and‐slab lasso generalized linear models for prediction and associated genes detection
  publication-title: Genetics
– volume: 73
  start-page: 315
  issue: 2
  year: 2021
  end-page: 323
  article-title: Cancer in systemic sclerosis: analysis of antibodies against components of the TH/TO complex
  publication-title: Arthritis Rheumatol
– volume: 67
  start-page: 353
  issue: 2
  year: 2011
  end-page: 362
  article-title: Identification of differential aberrations in multiple‐sample array CGH studies
  publication-title: Biometrics
– volume: 2020
  year: 2020
  article-title: ARMCX family gene expression analysis and potential prognostic biomarkers for prediction of clinical outcome in patients with gastric carcinoma
  publication-title: Biomed Res Int
– volume: 66
  start-page: 940
  issue: 7
  year: 2007
  end-page: 944
  article-title: Changes in causes of death in systemic sclerosis, 1972–2002
  publication-title: Ann Rheum Dis
– volume: 33
  start-page: 4988
  issue: 28
  year: 2014
  end-page: 4998
  article-title: Integrative analysis of gene–environment interactions under a multi‐response partially linear varying coefficient model
  publication-title: Stat Med
– start-page: 315
  year: 2021
  end-page: 331
– volume: 1
  year: 2023
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  end-page: 1429
  article-title: The adaptive lasso and its oracle properties
  publication-title: J Am Stat Assoc
– volume: 107
  start-page: 214
  issue: 497
  year: 2012
  end-page: 222
  article-title: Quantile regression for analyzing heterogeneity in ultra‐high dimension
  publication-title: J Am Stat Assoc
– volume: 12
  year: 2021
  article-title: Identifying gene–environment interactions with robust marginal Bayesian variable selection
  publication-title: Front Genet
– start-page: 3841
  year: 2009
  ident: e_1_2_9_43_1
  article-title: Quantile regression in partially linear varying coefficient models
  publication-title: Ann Stat
– ident: e_1_2_9_74_1
  doi: 10.1038/onc.2011.611
– ident: e_1_2_9_32_1
  doi: 10.1093/bioinformatics/btx300
– volume-title: “Package “RQPEN”,” Penalized Quantile Regression
  year: 2023
  ident: e_1_2_9_45_1
– ident: e_1_2_9_4_1
  doi: 10.1002/(SICI)1097-0142(20000201)88:3<589::AID-CNCR15>3.0.CO;2-I
– ident: e_1_2_9_68_1
  doi: 10.1111/insr.12114
– start-page: 226
  year: 2013
  ident: e_1_2_9_6_1
  article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets
  publication-title: Ann Appl Stat
– ident: e_1_2_9_44_1
  doi: 10.1016/j.csda.2012.07.015
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1541-0420.2011.01652.x
– ident: e_1_2_9_56_1
  doi: 10.1021/cb5001907
– ident: e_1_2_9_62_1
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: e_1_2_9_72_1
  doi: 10.1038/ng.3762
– ident: e_1_2_9_10_1
  doi: 10.1080/10618600.2014.913516
– ident: e_1_2_9_2_1
  doi: 10.1158/2159-8290.CD-12-0095
– ident: e_1_2_9_69_1
  doi: 10.1093/hmg/11.6.641
– ident: e_1_2_9_39_1
  doi: 10.1016/S0167-7152(02)00040-8
– volume: 06
  start-page: 369
  issue: 2
  year: 2010
  ident: e_1_2_9_37_1
  article-title: Penalized regression, standard errors, and Bayesian lassos
  publication-title: Bayesian Anal
– ident: e_1_2_9_64_1
  doi: 10.1007/978-1-0716-0947-7_13
– ident: e_1_2_9_60_1
  doi: 10.1111/rssb.12388
– ident: e_1_2_9_40_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_9_22_1
  doi: 10.1111/biom.13670
– ident: e_1_2_9_51_1
  doi: 10.1002/art.41493
– ident: e_1_2_9_57_1
  doi: 10.1186/s12964-021-00737-8
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jmva.2018.06.009
– ident: e_1_2_9_19_1
  doi: 10.1007/s11222-022-10137-8
– ident: e_1_2_9_50_1
  doi: 10.1049/iet-syb.2018.5040
– ident: e_1_2_9_65_1
  doi: 10.2307/1913643
– ident: e_1_2_9_17_1
  doi: 10.1146/annurev-statistics-031017-100438
– ident: e_1_2_9_27_1
  doi: 10.1080/01621459.1993.10476353
– ident: e_1_2_9_5_1
  doi: 10.1093/bib/bbu046
– ident: e_1_2_9_59_1
  doi: 10.1093/bioinformatics/btac416
– ident: e_1_2_9_52_1
  doi: 10.1136/ard.2006.066068
– ident: e_1_2_9_16_1
  doi: 10.1214/09-BA403
– ident: e_1_2_9_24_1
  doi: 10.1093/biostatistics/kxab038
– start-page: 315
  volume-title: Statistical Analysis of Proteomic Data: Methods and Tools
  year: 2021
  ident: e_1_2_9_15_1
– start-page: 73
  volume-title: Artificial Intelligence and Statistics
  year: 2009
  ident: e_1_2_9_29_1
– ident: e_1_2_9_25_1
  doi: 10.1016/S0167-7152(01)00124-9
– ident: e_1_2_9_26_1
  doi: 10.1214/10-BA521
– ident: e_1_2_9_48_1
  doi: 10.3390/ht8010004
– ident: e_1_2_9_30_1
  doi: 10.1080/01621459.2016.1260469
– ident: e_1_2_9_66_1
  doi: 10.1214/07-AOS507
– ident: e_1_2_9_70_1
  doi: 10.1042/BJ20110166
– ident: e_1_2_9_7_1
  doi: 10.1002/gepi.22194
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1467-9868.2010.00764.x
– ident: e_1_2_9_42_1
  doi: 10.1198/106186008X289155
– ident: e_1_2_9_61_1
  doi: 10.1080/01621459.2022.2025815
– ident: e_1_2_9_67_1
  doi: 10.1080/00949655.2015.1014372
– ident: e_1_2_9_58_1
  doi: 10.1214/12-BA703
– ident: e_1_2_9_23_1
  doi: 10.1016/j.csda.2023.107808
– ident: e_1_2_9_21_1
  doi: 10.3389/fgene.2021.667074
– ident: e_1_2_9_35_1
  doi: 10.1198/073500106000000251
– ident: e_1_2_9_46_1
  doi: 10.1080/01621459.2012.656014
– ident: e_1_2_9_47_1
  doi: 10.1002/sim.6287
– ident: e_1_2_9_34_1
  doi: 10.1080/00949655.2010.496117
– ident: e_1_2_9_33_1
  doi: 10.1534/genetics.116.192195
– ident: e_1_2_9_36_1
  doi: 10.1198/016214508000000337
– ident: e_1_2_9_11_1
  doi: 10.1186/1471-2164-11-517
– ident: e_1_2_9_31_1
  doi: 10.18637/jss.v033.i01
– ident: e_1_2_9_49_1
  doi: 10.1016/j.biopha.2018.05.055
– ident: e_1_2_9_55_1
  doi: 10.1111/pcmr.12945
– ident: e_1_2_9_14_1
  doi: 10.1214/19-AOAS1269
– ident: e_1_2_9_71_1
  doi: 10.1093/nar/gky1019
– ident: e_1_2_9_3_1
  doi: 10.1038/ng.3564
– volume: 2020
  year: 2020
  ident: e_1_2_9_73_1
  article-title: ARMCX family gene expression analysis and potential prognostic biomarkers for prediction of clinical outcome in patients with gastric carcinoma
  publication-title: Biomed Res Int
– ident: e_1_2_9_53_1
  doi: 10.14740/wjon1349
– ident: e_1_2_9_20_1
  doi: 10.3390/e25091310
– volume: 19
  start-page: 801
  issue: 2
  year: 2009
  ident: e_1_2_9_41_1
  article-title: Variable selection in quantile regression
  publication-title: Stat Sin
– ident: e_1_2_9_38_1
  doi: 10.1198/016214506000000735
– ident: e_1_2_9_28_1
  doi: 10.1214/10-BA507
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1541-0420.2010.01457.x
– volume: 21
  start-page: 1
  issue: 73
  year: 2020
  ident: e_1_2_9_18_1
  article-title: Scalable approximate MCMC algorithms for the horseshoe prior
  publication-title: J Mach Learn Res
– volume: 27
  issue: 4
  year: 2012
  ident: e_1_2_9_63_1
  article-title: A selective review of group selection in high‐dimensional models
  publication-title: Stat Sci Rev J Inst Math Stat
– ident: e_1_2_9_54_1
  doi: 10.3390/cancers15041097
SSID ssj0011527
Score 2.464845
Snippet Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past...
Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4928
SubjectTerms Bayes Theorem
Cancer
Computer Simulation
expectation‐maximization (EM) algorithm
Genomics
Genomics - methods
Humans
Likelihood Functions
Lung cancer
Lung Neoplasms - genetics
Melanoma - genetics
Models, Statistical
Neoplasms - genetics
quantile LASSO
regularized Bayesian quantile regression
robust variable selection
Skin Neoplasms - genetics
spike‐and‐slab prior
Title The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10196
https://www.ncbi.nlm.nih.gov/pubmed/39260448
https://www.proquest.com/docview/3119615168
https://www.proquest.com/docview/3103445325
Volume 43
WOSCitedRecordID wos001309686400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS9xAFL3oKiIUq1vbrlUZpQ--BLOTmcwOPpW2S4VVxC_2yTBfgaU1azeuz_0J_Y39Jd7JJCnSFgq-hMDcSYa5ZzLnzs2cAXgvnLDIquPIqVxGLGE80oy7yOJkk7uEWlctXVyPxOnpYDyWZwtw1OyFCfoQ7YKbHxnV99oPcKXLw9-ioeXk1oeeMl2EJYq4ZR1Y-nQ-vBq1SYTmxFafpUxFnzfCQjE9bCs_nY7-4JhPKWs15wxfPqu167BWU03yIWBjAxZc0YWVkzqZ3oUXYcmOhJ1IXVj1xDPoNr-CG8QPKe8mX92vHz9VYfGK4NHk-xxdgS0gIy8ISZDyktlUz8t78oBRt9-HRcrqaB30N5kUxHhUzYiXgr3FB5My_Le4CVfDz5cfv0T1WQyRSXiSRpr3ldDOy3VJS63ggnHVl4Y67izzM5xUOddaJtbRPHaSamMMTVWuMAiWLHkNnWJauLdA4koF0bA8xorMajRBziBErlOuHM97cNC4JDO1ULk_L-NbFiSWaYadmVWd2YP91vQuqHP8zWi78WtWD9AyS_pYgmwnHfRgry3GoeXzJapw07m38XqIPKG8B28CHtq3IK1MYwxtsbGV2__9-uzi-KS62fp_03ewSrGT_J5HGm9D5342dzuwbB4QBbNdWBTjwW6N9keoMgJz
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VLYJKqIUttEtbMIhDL1Gzjh3XEhfUsmpFdoWgRT018lekFTRbNt2e-xP6G_kljOMkqAIkJC5RJI8Ty_McP9uZNwBvhBMWWXUcOVXIiCWMR5pxF1mcbAqXUOvqrYsvmZhM9s_O5McleNvGwgR9iG7DzY-M-nvtB7jfkN77pRpaTS_82lOm92CZIYx4D5YPP41Os-4UoU3Z6o8pUzHkrbJQTPe6ynfno99I5l3OWk86o7X_a-5jWG3IJnkX0PEEllzZhwfj5ji9D4_Cph0JsUh9WPHUMyg3r8M5IohUl9Ov7sfNrSotXhE-mnxfoDOwCSTzkpAESS-Zz_SiuiLXuO72kVikqpProMfJtCTG42pOvBjsBT6YVOHPxadwOnp_cnAUNdkYIpPwJI00HyqhnRfskpZawQXjaigNddxZ5uc4qQqutUyso0XsJNXGGJqqQuEyWLLkGfTKWek2gcS1DqJhRYwVmdVogqxBiEKnXDleDGC39UluGqlynzHjWx5ElmmOnZnXnTmA153pZdDn-JPRduvYvBmiVZ4MsQT5Tro_gFddMQ4uf2KiSjdbeBuviMgTygewEQDRvQWJZRrj4hYbW_v976_PPx-P65vn_276Eh4enYyzPDuefNiCFYod5iMgabwNvav5wu3AfXONiJi_aED_EwMJBXs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qK6VQqp61Pa26ig--hOY2u9ku9EWsh8XrUdRKnwz7Fw7b3PXS63M_Qj9jP4mz2SRSVBB8CYGdTZadmcxvdrO_AXgjnLCIqtPEKS8TljGeaMZdYjHYeJdR6-qli28jMR7vnZ7K4yXYb8_CRH6IbsEteEb9vQ4O7mbW7_5iDa0m5yH3lPk9WGFc5uiWKwefhyejbhehLdkatilzMeAts1BKd7vOd-PRbyDzLmatg87wwf8N9yFsNGCTvIvW8QiWXNmD1aNmO70H63HRjsSzSD1YC9AzMjc_hu9oQaSaTX642-sbVVq8ovlocrFAZeAQyChQQhIEvWQ-1Yvqklxh3h1OYpGqLq6DGieTkphgV3MSyGDP8cGkin8ubsLJ8MPX9x-TphpDYjKe5YnmAyW0C4Rd0lIruGBcDaShjjvLQoyTynOtZWYd9amTVBtjaK68wjRYsuwJLJfT0m0DSWseRMN8ih2Z1SiCqEEIr3OuHPd9eNvqpDANVXmomHFWRJJlWuBkFvVk9uF1JzqL_Bx_EtppFVs0LloV2QBbEO_ke3141TWjc4UdE1W66SLIBEZEnlHeh61oEN1bEFjmKSa3ONha739_ffHl8Ki-efrvoi9h9fhgWIwOx5-ewRrF-QoHIGm6A8uX84V7DvfNFRrE_EVj8z8Bhs4E9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+spike%E2%80%90and%E2%80%90slab+quantile+LASSO+for+robust+variable+selection+in+cancer+genomics+studies&rft.jtitle=Statistics+in+medicine&rft.au=Liu%2C+Yuwen&rft.au=Ren%2C+Jie&rft.au=Ma%2C+Shuangge&rft.au=Wu%2C+Cen&rft.date=2024-11-20&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=43&rft.issue=26&rft.spage=4928&rft.epage=4983&rft_id=info:doi/10.1002%2Fsim.10196&rft.externalDBID=10.1002%252Fsim.10196&rft.externalDocID=SIM10196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon