The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies
Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated...
Gespeichert in:
| Veröffentlicht in: | Statistics in medicine Jg. 43; H. 26; S. 4928 - 4983 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
20.11.2024
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0277-6715, 1097-0258, 1097-0258 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high‐dimensional genomics data, we propose the spike‐and‐slab quantile LASSO through a fully Bayesian spike‐and‐slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self‐adaptivity to the sparsity pattern from the spike‐and‐slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431–444). Furthermore, the spike‐and‐slab quantile LASSO has a computational advantage to locate the posterior modes via soft‐thresholding rule guided Expectation‐Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy‐tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike‐and‐slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA). |
|---|---|
| AbstractList | Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA). Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA).Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high-dimensional genomics data, we propose the spike-and-slab quantile LASSO through a fully Bayesian spike-and-slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self-adaptivity to the sparsity pattern from the spike-and-slab LASSO (Roc̆ková and George, J Am Stat Associat, 2018, 113(521): 431-444). Furthermore, the spike-and-slab quantile LASSO has a computational advantage to locate the posterior modes via soft-thresholding rule guided Expectation-Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy-tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike-and-slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA). Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past decade, robust variable selection methods have emerged as powerful alternatives to the nonrobust ones to identify important genes associated with heterogeneous disease traits and build superior predictive models. In this study, to keep the remarkable features of the quantile LASSO and fully Bayesian regularized quantile regression while overcoming their disadvantage in the analysis of high‐dimensional genomics data, we propose the spike‐and‐slab quantile LASSO through a fully Bayesian spike‐and‐slab formulation under the robust likelihood by adopting the asymmetric Laplace distribution (ALD). The proposed robust method has inherited the prominent properties of selective shrinkage and self‐adaptivity to the sparsity pattern from the spike‐and‐slab LASSO (Roc̆ková and George, J Am Stat Associat , 2018, 113(521): 431–444). Furthermore, the spike‐and‐slab quantile LASSO has a computational advantage to locate the posterior modes via soft‐thresholding rule guided Expectation‐Maximization (EM) steps in the coordinate descent framework, a phenomenon rarely observed for robust regularization with nondifferentiable loss functions. We have conducted comprehensive simulation studies with a variety of heavy‐tailed errors in both homogeneous and heterogeneous model settings to demonstrate the superiority of the spike‐and‐slab quantile LASSO over its competing methods. The advantage of the proposed method has been further demonstrated in case studies of the lung adenocarcinomas (LUAD) and skin cutaneous melanoma (SKCM) data from The Cancer Genome Atlas (TCGA). |
| Author | Ren, Jie Wu, Cen Liu, Yuwen Ma, Shuangge |
| Author_xml | – sequence: 1 givenname: Yuwen surname: Liu fullname: Liu, Yuwen organization: Kansas State University – sequence: 2 givenname: Jie surname: Ren fullname: Ren, Jie organization: Indiana University School of Medicine – sequence: 3 givenname: Shuangge orcidid: 0000-0001-9001-4999 surname: Ma fullname: Ma, Shuangge organization: Yale University – sequence: 4 givenname: Cen orcidid: 0000-0002-5172-141X surname: Wu fullname: Wu, Cen email: wucen@ksu.edu organization: Kansas State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39260448$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1O3DAUhS1EBQPtgheoLHVTFin-ieN4iVChSFOxGLqtZTs31DSxBztpxY5H4Bl5kprOsEHt5vpK_s7R1TkHaDfEAAgdUfKJEsJOsh_LQlWzgxaUKFkRJtpdtCBMyqqRVOyjg5xvCaFUMLmH9rliDanrdoG-X_8AnNf-Jzw9PJrQlZkHY_HdbMLkB8DL09XqCvcx4RTtnCf8yyRvbPnJMICbfAzYB-xMcJDwDYQ4epdxnubOQ36L3vRmyPBu-x6ib-efr8--VMuri8uz02XluOBNZQU10oIkvFEd66SQtTBUOQYCurqWtFWmF9Yq3gHrCShmnXOsMb3hvFU1P0QfN77rFO9myJMefXYwDCZAnLPmlPC6FpyJgn54hd7GOYVyXaFKhlTQpi3U-y012xE6vU5-NOlevyRXgJMN4FLMOUGvnZ_McxxTMn7QlOjnbnTpRv_tpiiOXyleTP_Fbt1_lw7u_w_q1eXXjeIPQMme0A |
| CitedBy_id | crossref_primary_10_3390_e26090794 |
| Cites_doi | 10.1038/onc.2011.611 10.1093/bioinformatics/btx300 10.1002/(SICI)1097-0142(20000201)88:3<589::AID-CNCR15>3.0.CO;2-I 10.1111/insr.12114 10.1016/j.csda.2012.07.015 10.1111/j.1541-0420.2011.01652.x 10.1021/cb5001907 10.1111/j.1467-9868.2008.00674.x 10.1038/ng.3762 10.1080/10618600.2014.913516 10.1158/2159-8290.CD-12-0095 10.1093/hmg/11.6.641 10.1016/S0167-7152(02)00040-8 10.1007/978-1-0716-0947-7_13 10.1111/rssb.12388 10.1111/j.2517-6161.1996.tb02080.x 10.1111/biom.13670 10.1002/art.41493 10.1186/s12964-021-00737-8 10.1016/j.jmva.2018.06.009 10.1007/s11222-022-10137-8 10.1049/iet-syb.2018.5040 10.2307/1913643 10.1146/annurev-statistics-031017-100438 10.1080/01621459.1993.10476353 10.1093/bib/bbu046 10.1093/bioinformatics/btac416 10.1136/ard.2006.066068 10.1214/09-BA403 10.1093/biostatistics/kxab038 10.1016/S0167-7152(01)00124-9 10.1214/10-BA521 10.3390/ht8010004 10.1080/01621459.2016.1260469 10.1214/07-AOS507 10.1042/BJ20110166 10.1002/gepi.22194 10.1111/j.1467-9868.2010.00764.x 10.1198/106186008X289155 10.1080/01621459.2022.2025815 10.1080/00949655.2015.1014372 10.1214/12-BA703 10.1016/j.csda.2023.107808 10.3389/fgene.2021.667074 10.1198/073500106000000251 10.1080/01621459.2012.656014 10.1002/sim.6287 10.1080/00949655.2010.496117 10.1534/genetics.116.192195 10.1198/016214508000000337 10.1186/1471-2164-11-517 10.18637/jss.v033.i01 10.1016/j.biopha.2018.05.055 10.1111/pcmr.12945 10.1214/19-AOAS1269 10.1093/nar/gky1019 10.1038/ng.3564 10.14740/wjon1349 10.3390/e25091310 10.1198/016214506000000735 10.1214/10-BA507 10.1111/j.1541-0420.2010.01457.x 10.3390/cancers15041097 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1002/sim.10196 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 4983 |
| ExternalDocumentID | 39260448 10_1002_sim_10196 SIM10196 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: Johnson Cancer Research Center at Kansas State University: The Innovative Research Award – fundername: National Institutes of Health funderid: CA204120; CA121974; CA196530 – fundername: NCI NIH HHS grantid: R01 CA204120 – fundername: NCI NIH HHS grantid: P50 CA196530 – fundername: NIH HHS grantid: CA121974 – fundername: NCI NIH HHS grantid: P50 CA121974 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIH HHS grantid: CA204120 – fundername: NIH HHS grantid: CA196530 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION EBD EMOBN O8X SV3 CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c3536-b51a7be70369d2d75745a19c2e5ed447189af5bb93de2f0e92bccc26afa338943 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001309686400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Fri Jul 11 10:34:51 EDT 2025 Tue Oct 07 05:14:06 EDT 2025 Sat Nov 22 01:41:03 EST 2025 Sat Nov 29 05:32:50 EST 2025 Tue Nov 18 22:04:15 EST 2025 Wed Jan 22 17:13:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Keywords | expectation‐maximization (EM) algorithm robust variable selection quantile LASSO regularized Bayesian quantile regression spike‐and‐slab prior |
| Language | English |
| License | 2024 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3536-b51a7be70369d2d75745a19c2e5ed447189af5bb93de2f0e92bccc26afa338943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9001-4999 0000-0002-5172-141X |
| PMID | 39260448 |
| PQID | 3119615168 |
| PQPubID | 48361 |
| PageCount | 56 |
| ParticipantIDs | proquest_miscellaneous_3103445325 proquest_journals_3119615168 pubmed_primary_39260448 crossref_citationtrail_10_1002_sim_10196 crossref_primary_10_1002_sim_10196 wiley_primary_10_1002_sim_10196_SIM10196 |
| PublicationCentury | 2000 |
| PublicationDate | 20 November 2024 |
| PublicationDateYYYYMMDD | 2024-11-20 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20 November 2024 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2023; 79 2011; 439 2017; 49 2018; 168 2019; 13 2000; 88 2002; 57 2002; 11 2008; 36 2023; 1 2008; 103 2008; 70 2021; 73 1978 2023; 24 2023; 25 2018; 5 2021; 34 2013; 57 2017; 33 2015; 85 2011; 73 2016; 84 2011; 67 2022; 32 2012; 27 2014; 9 2012; 68 2009; 19 2010; 5 2007; 66 2016; 48 2022; 38 2007; 25 2017; 205 2001; 54 2019; 8 2010; 33 2015; 16 2012 2023; 15 1993; 88 2020; 82 2011; 81 2018; 104 2008; 17 2009 1996; 58 2012; 107 2012; 31 2015; 24 2012; 2 2021; 12 2020; 2020 2023 2021 2019; 43 2010; 06 2018; 113 2021; 19 2019; 47 2013 2009; 4 2020; 21 2023; 118 2006; 101 2014; 33 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Wu Y (e_1_2_9_41_1) 2009; 19 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 Sherwood B (e_1_2_9_45_1) 2023 e_1_2_9_54_1 Carvalho CM (e_1_2_9_29_1) 2009 e_1_2_9_71_1 Kepplinger D (e_1_2_9_15_1) 2021 e_1_2_9_14_1 e_1_2_9_39_1 Johndrow J (e_1_2_9_18_1) 2020; 21 e_1_2_9_16_1 e_1_2_9_58_1 Huang J (e_1_2_9_63_1) 2012; 27 e_1_2_9_64_1 Casella G (e_1_2_9_37_1) 2010; 06 e_1_2_9_20_1 Wang HJ (e_1_2_9_43_1) 2009 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 Wang T (e_1_2_9_73_1) 2020; 2020 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Alfons A (e_1_2_9_6_1) 2013 e_1_2_9_70_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 |
| References_xml | – volume: 5 start-page: 533 issue: 3 year: 2010 end-page: 556 article-title: Bayesian regularized quantile regression publication-title: Bayesian Anal – volume: 24 start-page: 676 issue: 3 year: 2015 end-page: 694 article-title: An iterative coordinate descent algorithm for high‐dimensional nonconvex penalized quantile regression publication-title: J Comput Graph Stat – volume: 06 start-page: 369 issue: 2 year: 2010 end-page: 411 article-title: Penalized regression, standard errors, and Bayesian lassos publication-title: Bayesian Anal – volume: 118 start-page: 2013 issue: 543 year: 2023 end-page: 2028 article-title: Bayesian bootstrap spike‐and‐slab lasso publication-title: J Am Stat Assoc – start-page: 33 year: 1978 end-page: 50 article-title: Regression quantiles publication-title: Econometrica – volume: 16 start-page: 873 issue: 5 year: 2015 end-page: 883 article-title: A selective review of robust variable selection with applications in bioinformatics publication-title: Brief Bioinform – volume: 19 start-page: 56 issue: 1 year: 2021 article-title: The emerging role of the KCTD proteins in cancer publication-title: Cell Commun Signal – volume: 84 start-page: 327 issue: 3 year: 2016 end-page: 344 article-title: Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood publication-title: Int Stat Rev – volume: 34 start-page: 853 issue: 5 year: 2021 end-page: 868 article-title: Connexins in melanoma: potential role of cx46 in its aggressiveness publication-title: Pigment Cell Melanoma Res – volume: 70 start-page: 849 issue: 5 year: 2008 end-page: 911 article-title: Sure independence screening for ultrahigh dimensional feature space publication-title: J Royal Stat Soc B Stat Methodol – year: 2023 article-title: The Bayesian regularized quantile varying coefficient model publication-title: Comput Stat Data Analy – volume: 15 start-page: 1097 issue: 4 year: 2023 article-title: Similarities and differences in the protein composition of cutaneous melanoma cells and their exosomes identified by mass spectrometry publication-title: Cancer – volume: 48 start-page: 607 issue: 6 year: 2016 end-page: 616 article-title: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas publication-title: Nat Genet – volume: 17 start-page: 163 issue: 1 year: 2008 end-page: 185 article-title: L 1‐norm quantile regression publication-title: J Comput Graph Stat – volume: 85 start-page: 3744 issue: 18 year: 2015 end-page: 3754 article-title: Bayesian composite quantile regression publication-title: J Stat Comput Simul – volume: 8 start-page: 4 issue: 1 year: 2019 article-title: A selective review of multi‐level omics data integration using variable selection publication-title: High‐throughput – volume: 439 start-page: 113 issue: 1 year: 2011 end-page: 128 article-title: Disrupted in renal carcinoma 2 (dirc2), a novel transporter of the lysosomal membrane, is proteolytically processed by Cathepsin l publication-title: Biochem J – start-page: 3841 year: 2009 end-page: 3866 article-title: Quantile regression in partially linear varying coefficient models publication-title: Ann Stat – volume: 82 start-page: 1273 issue: 5 year: 2020 end-page: 1300 article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping publication-title: J Royal Stat Soc B Stat Methodol – volume: 68 start-page: 316 issue: 1 year: 2012 end-page: 326 article-title: High‐dimensional heteroscedastic regression with an application to EQTL data analysis publication-title: Biometrics – volume: 31 start-page: 4567 issue: 42 year: 2012 end-page: 4576 article-title: Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling publication-title: Oncogene – volume: 9 start-page: 1340 issue: 6 year: 2014 end-page: 1350 article-title: Inositol phosphate recycling regulates glycolytic and lipid metabolism that drives cancer aggressiveness publication-title: ACS Chem Biol – volume: 24 start-page: 425 issue: 2 year: 2023 end-page: 442 article-title: Bayesian finite mixture of regression analysis for cancer based on histopathological imaging–environment interactions publication-title: Biostatistics – volume: 2 start-page: 401 issue: 5 year: 2012 end-page: 404 article-title: The CBIO cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov – volume: 103 start-page: 681 issue: 482 year: 2008 end-page: 686 article-title: The Bayesian lasso publication-title: J Am Stat Assoc – volume: 33 start-page: 1 issue: 1 year: 2010 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw – volume: 88 start-page: 881 issue: 423 year: 1993 end-page: 889 article-title: Variable selection via Gibbs sampling publication-title: J Am Stat Assoc – volume: 4 start-page: 85 issue: 1 year: 2009 end-page: 117 article-title: A review of Bayesian variable selection methods: what, how and which publication-title: Bayesian Anal – volume: 49 start-page: 457 issue: 3 year: 2017 end-page: 464 article-title: Biallelic mutations in the 3' exonuclease toe1 cause pontocerebellar hypoplasia and uncover a role in SNRNA processing publication-title: Nat Genet – start-page: 73 year: 2009 end-page: 80 – volume: 47 start-page: 391 issue: 1 year: 2019 end-page: 405 article-title: Toe1 acts as a 3' exonuclease for telomerase RNA and regulates telomere maintenance publication-title: Nucleic Acids Res – start-page: 191 year: 2021 end-page: 223 article-title: Gene–environment interaction: a variable selection perspective publication-title: Epistasis Methods Protocols – volume: 21 start-page: 1 issue: 73 year: 2020 end-page: 61 article-title: Scalable approximate MCMC algorithms for the horseshoe prior publication-title: J Mach Learn Res – volume: 13 start-page: 2065 issue: 4 year: 2019 end-page: 2090 article-title: Robust elastic net estimators for variable selection and identification of proteomic biomarkers publication-title: Ann Appl Stat – volume: 33 start-page: 2799 issue: 18 year: 2017 end-page: 2807 article-title: The spike‐and‐slab lasso cox model for survival prediction and associated genes detection publication-title: Bioinformatics – volume: 104 start-page: 788 year: 2018 end-page: 797 article-title: Hydrogen gas inhibits lung cancer progression through targeting SMC3 publication-title: Biomed Pharmacother – start-page: 226 year: 2013 end-page: 248 article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets publication-title: Ann Appl Stat – volume: 73 start-page: 325 issue: 3 year: 2011 end-page: 349 article-title: Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection publication-title: J Royal Stat Soc B Stat Methodol – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J Royal Stat Soc B Methodol – volume: 81 start-page: 1565 issue: 11 year: 2011 end-page: 1578 article-title: Gibbs sampling methods for Bayesian quantile regression publication-title: J Stat Comput Simul – volume: 25 start-page: 1310 issue: 9 year: 2023 article-title: Adaptive MCMC for Bayesian variable selection in generalised linear models and survival models publication-title: Entropy – volume: 54 start-page: 437 issue: 4 year: 2001 end-page: 447 article-title: Bayesian quantile regression publication-title: Stat Probab Lett – volume: 13 start-page: 69 issue: 2 year: 2019 end-page: 76 article-title: Micrornas and their target MRNAS as potential biomarkers among smokers and non‐smokers with lung adenocarcinoma publication-title: IET Syst Biol – volume: 36 start-page: 1108 issue: 3 year: 2008 end-page: 1126 article-title: Composite quantile regression and the oracle model selection theory publication-title: Ann Stat – volume: 11 start-page: 1 issue: 1 year: 2010 end-page: 10 article-title: A robust penalized method for the analysis of noisy DNA copy number data publication-title: BMC Genomics – volume: 12 start-page: 7 issue: 1 year: 2021 article-title: Cutaneous malignant melanoma: A review of early diagnosis and management publication-title: World J Oncol – volume: 25 start-page: 347 issue: 3 year: 2007 end-page: 355 article-title: Robust regression shrinkage and consistent variable selection through the lad‐lasso publication-title: J Bus Econ Stat – volume: 38 start-page: 3918 issue: 16 year: 2022 end-page: 3926 article-title: Variational Bayes for high‐dimensional proportional hazards models with applications within gene expression publication-title: Bioinformatics – volume: 5 start-page: 141 year: 2018 end-page: 167 article-title: Toward integrative Bayesian analysis in molecular biology publication-title: Annu Rev Stat Appl – volume: 88 start-page: 589 issue: 3 year: 2000 end-page: 595 article-title: Breslow thickness and Clark level in melanoma: support for including level in pathology reports and in American joint committee on cancer staging publication-title: Cancer – volume: 27 issue: 4 year: 2012 article-title: A selective review of group selection in high‐dimensional models publication-title: Stat Sci Rev J Inst Math Stat – volume: 32 start-page: 84 issue: 5 year: 2022 article-title: Adaptive random neighbourhood informed Markov chain Monte Carlo for high‐dimensional Bayesian variable selection publication-title: Stat Comput – volume: 57 start-page: 435 issue: 1 year: 2013 end-page: 449 article-title: Variable selection in quantile varying coefficient models with longitudinal data publication-title: Comput Stat Data Analy – volume: 19 start-page: 801 issue: 2 year: 2009 end-page: 817 article-title: Variable selection in quantile regression publication-title: Stat Sin – volume: 5 start-page: 171 issue: 1 year: 2010 end-page: 188 article-title: Inference with normal‐gamma prior distributions in regression problems publication-title: Bayesian Anal – volume: 57 start-page: 43 issue: 1 year: 2002 end-page: 52 article-title: An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution publication-title: Stat Probab Lett – year: 2012 – volume: 11 start-page: 641 issue: 6 year: 2002 end-page: 649 article-title: Disruption of a novel MFS transporter gene, Dirc2, by a familial renal cell carcinoma‐associated t (2; 3)(q35; q21) publication-title: Hum Mol Genet – volume: 79 start-page: 684 issue: 2 year: 2023 end-page: 694 article-title: Robust Bayesian variable selection for gene–environment interactions publication-title: Biometrics – volume: 113 start-page: 431 issue: 521 year: 2018 end-page: 444 article-title: The spike‐and‐slab Lasso publication-title: J Am Stat Assoc – volume: 43 start-page: 276 issue: 3 year: 2019 end-page: 291 article-title: Robust network‐based regularization and variable selection for high‐dimensional genomic data in cancer prognosis publication-title: Genet Epidemiol – volume: 168 start-page: 119 year: 2018 end-page: 130 article-title: Robust network‐based analysis of the associations between (epi) genetic measurements publication-title: J Multivar Anal – volume: 205 start-page: 77 issue: 1 year: 2017 end-page: 88 article-title: The spike‐and‐slab lasso generalized linear models for prediction and associated genes detection publication-title: Genetics – volume: 73 start-page: 315 issue: 2 year: 2021 end-page: 323 article-title: Cancer in systemic sclerosis: analysis of antibodies against components of the TH/TO complex publication-title: Arthritis Rheumatol – volume: 67 start-page: 353 issue: 2 year: 2011 end-page: 362 article-title: Identification of differential aberrations in multiple‐sample array CGH studies publication-title: Biometrics – volume: 2020 year: 2020 article-title: ARMCX family gene expression analysis and potential prognostic biomarkers for prediction of clinical outcome in patients with gastric carcinoma publication-title: Biomed Res Int – volume: 66 start-page: 940 issue: 7 year: 2007 end-page: 944 article-title: Changes in causes of death in systemic sclerosis, 1972–2002 publication-title: Ann Rheum Dis – volume: 33 start-page: 4988 issue: 28 year: 2014 end-page: 4998 article-title: Integrative analysis of gene–environment interactions under a multi‐response partially linear varying coefficient model publication-title: Stat Med – start-page: 315 year: 2021 end-page: 331 – volume: 1 year: 2023 – volume: 101 start-page: 1418 issue: 476 year: 2006 end-page: 1429 article-title: The adaptive lasso and its oracle properties publication-title: J Am Stat Assoc – volume: 107 start-page: 214 issue: 497 year: 2012 end-page: 222 article-title: Quantile regression for analyzing heterogeneity in ultra‐high dimension publication-title: J Am Stat Assoc – volume: 12 year: 2021 article-title: Identifying gene–environment interactions with robust marginal Bayesian variable selection publication-title: Front Genet – start-page: 3841 year: 2009 ident: e_1_2_9_43_1 article-title: Quantile regression in partially linear varying coefficient models publication-title: Ann Stat – ident: e_1_2_9_74_1 doi: 10.1038/onc.2011.611 – ident: e_1_2_9_32_1 doi: 10.1093/bioinformatics/btx300 – volume-title: “Package “RQPEN”,” Penalized Quantile Regression year: 2023 ident: e_1_2_9_45_1 – ident: e_1_2_9_4_1 doi: 10.1002/(SICI)1097-0142(20000201)88:3<589::AID-CNCR15>3.0.CO;2-I – ident: e_1_2_9_68_1 doi: 10.1111/insr.12114 – start-page: 226 year: 2013 ident: e_1_2_9_6_1 article-title: Sparse least trimmed squares regression for analyzing high‐dimensional large data sets publication-title: Ann Appl Stat – ident: e_1_2_9_44_1 doi: 10.1016/j.csda.2012.07.015 – ident: e_1_2_9_9_1 doi: 10.1111/j.1541-0420.2011.01652.x – ident: e_1_2_9_56_1 doi: 10.1021/cb5001907 – ident: e_1_2_9_62_1 doi: 10.1111/j.1467-9868.2008.00674.x – ident: e_1_2_9_72_1 doi: 10.1038/ng.3762 – ident: e_1_2_9_10_1 doi: 10.1080/10618600.2014.913516 – ident: e_1_2_9_2_1 doi: 10.1158/2159-8290.CD-12-0095 – ident: e_1_2_9_69_1 doi: 10.1093/hmg/11.6.641 – ident: e_1_2_9_39_1 doi: 10.1016/S0167-7152(02)00040-8 – volume: 06 start-page: 369 issue: 2 year: 2010 ident: e_1_2_9_37_1 article-title: Penalized regression, standard errors, and Bayesian lassos publication-title: Bayesian Anal – ident: e_1_2_9_64_1 doi: 10.1007/978-1-0716-0947-7_13 – ident: e_1_2_9_60_1 doi: 10.1111/rssb.12388 – ident: e_1_2_9_40_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_9_22_1 doi: 10.1111/biom.13670 – ident: e_1_2_9_51_1 doi: 10.1002/art.41493 – ident: e_1_2_9_57_1 doi: 10.1186/s12964-021-00737-8 – ident: e_1_2_9_13_1 doi: 10.1016/j.jmva.2018.06.009 – ident: e_1_2_9_19_1 doi: 10.1007/s11222-022-10137-8 – ident: e_1_2_9_50_1 doi: 10.1049/iet-syb.2018.5040 – ident: e_1_2_9_65_1 doi: 10.2307/1913643 – ident: e_1_2_9_17_1 doi: 10.1146/annurev-statistics-031017-100438 – ident: e_1_2_9_27_1 doi: 10.1080/01621459.1993.10476353 – ident: e_1_2_9_5_1 doi: 10.1093/bib/bbu046 – ident: e_1_2_9_59_1 doi: 10.1093/bioinformatics/btac416 – ident: e_1_2_9_52_1 doi: 10.1136/ard.2006.066068 – ident: e_1_2_9_16_1 doi: 10.1214/09-BA403 – ident: e_1_2_9_24_1 doi: 10.1093/biostatistics/kxab038 – start-page: 315 volume-title: Statistical Analysis of Proteomic Data: Methods and Tools year: 2021 ident: e_1_2_9_15_1 – start-page: 73 volume-title: Artificial Intelligence and Statistics year: 2009 ident: e_1_2_9_29_1 – ident: e_1_2_9_25_1 doi: 10.1016/S0167-7152(01)00124-9 – ident: e_1_2_9_26_1 doi: 10.1214/10-BA521 – ident: e_1_2_9_48_1 doi: 10.3390/ht8010004 – ident: e_1_2_9_30_1 doi: 10.1080/01621459.2016.1260469 – ident: e_1_2_9_66_1 doi: 10.1214/07-AOS507 – ident: e_1_2_9_70_1 doi: 10.1042/BJ20110166 – ident: e_1_2_9_7_1 doi: 10.1002/gepi.22194 – ident: e_1_2_9_8_1 doi: 10.1111/j.1467-9868.2010.00764.x – ident: e_1_2_9_42_1 doi: 10.1198/106186008X289155 – ident: e_1_2_9_61_1 doi: 10.1080/01621459.2022.2025815 – ident: e_1_2_9_67_1 doi: 10.1080/00949655.2015.1014372 – ident: e_1_2_9_58_1 doi: 10.1214/12-BA703 – ident: e_1_2_9_23_1 doi: 10.1016/j.csda.2023.107808 – ident: e_1_2_9_21_1 doi: 10.3389/fgene.2021.667074 – ident: e_1_2_9_35_1 doi: 10.1198/073500106000000251 – ident: e_1_2_9_46_1 doi: 10.1080/01621459.2012.656014 – ident: e_1_2_9_47_1 doi: 10.1002/sim.6287 – ident: e_1_2_9_34_1 doi: 10.1080/00949655.2010.496117 – ident: e_1_2_9_33_1 doi: 10.1534/genetics.116.192195 – ident: e_1_2_9_36_1 doi: 10.1198/016214508000000337 – ident: e_1_2_9_11_1 doi: 10.1186/1471-2164-11-517 – ident: e_1_2_9_31_1 doi: 10.18637/jss.v033.i01 – ident: e_1_2_9_49_1 doi: 10.1016/j.biopha.2018.05.055 – ident: e_1_2_9_55_1 doi: 10.1111/pcmr.12945 – ident: e_1_2_9_14_1 doi: 10.1214/19-AOAS1269 – ident: e_1_2_9_71_1 doi: 10.1093/nar/gky1019 – ident: e_1_2_9_3_1 doi: 10.1038/ng.3564 – volume: 2020 year: 2020 ident: e_1_2_9_73_1 article-title: ARMCX family gene expression analysis and potential prognostic biomarkers for prediction of clinical outcome in patients with gastric carcinoma publication-title: Biomed Res Int – ident: e_1_2_9_53_1 doi: 10.14740/wjon1349 – ident: e_1_2_9_20_1 doi: 10.3390/e25091310 – volume: 19 start-page: 801 issue: 2 year: 2009 ident: e_1_2_9_41_1 article-title: Variable selection in quantile regression publication-title: Stat Sin – ident: e_1_2_9_38_1 doi: 10.1198/016214506000000735 – ident: e_1_2_9_28_1 doi: 10.1214/10-BA507 – ident: e_1_2_9_12_1 doi: 10.1111/j.1541-0420.2010.01457.x – volume: 21 start-page: 1 issue: 73 year: 2020 ident: e_1_2_9_18_1 article-title: Scalable approximate MCMC algorithms for the horseshoe prior publication-title: J Mach Learn Res – volume: 27 issue: 4 year: 2012 ident: e_1_2_9_63_1 article-title: A selective review of group selection in high‐dimensional models publication-title: Stat Sci Rev J Inst Math Stat – ident: e_1_2_9_54_1 doi: 10.3390/cancers15041097 |
| SSID | ssj0011527 |
| Score | 2.464845 |
| Snippet | Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy‐tailed distributions in the complex traits. In the past... Data irregularity in cancer genomics studies has been widely observed in the form of outliers and heavy-tailed distributions in the complex traits. In the past... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4928 |
| SubjectTerms | Bayes Theorem Cancer Computer Simulation expectation‐maximization (EM) algorithm Genomics Genomics - methods Humans Likelihood Functions Lung cancer Lung Neoplasms - genetics Melanoma - genetics Models, Statistical Neoplasms - genetics quantile LASSO regularized Bayesian quantile regression robust variable selection Skin Neoplasms - genetics spike‐and‐slab prior |
| Title | The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10196 https://www.ncbi.nlm.nih.gov/pubmed/39260448 https://www.proquest.com/docview/3119615168 https://www.proquest.com/docview/3103445325 |
| Volume | 43 |
| WOSCitedRecordID | wos001309686400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61W4QqoQLL35ZSGcSBS9TYjuO1eqqAFUhthYBKeyKyHUdaQbNl0-2ZR-AZeRJm4iSoAiQkLlEiO7Hlmcl8_plvAJ6XFKdc8jyxVukk05Inljs6meMdOpQ0VKlrk03o09PpfG7ebcBhHwsT-SGGBTeyjPZ_TQZuXXPwizS0WZzT1NPkm7AlUG-zEWy9ej87Ox42EfqMrbRLmWuuemKhVBwML193R79hzOuQtfU5s9v_1ds7sNNBTXYUdeMubIR6DDdPus30MdyKS3YsRiKNYZuAZ-RtvgefUH9Yc7H4HH58-27rEq-oPI59XaMosAfsmAghGUJetlq6dXPJrnDWTXFYrGlT66C82aJmnrRqxYgK9hw_zJp4bvE-nM1ef3z5JulyMSReKpknTnGrXSC6LlOKUiudKcuNF0GFMiMPZ2ylnDOyDKJKgxHOey9yW1mcBJtMPoBRvazDI2Clk5nSxnppHMLFasorfOCuNA7xn1UTeNGLpPAdUTnly_hSRIplUeBgFu1gTuDZUPUisnP8qdJeL9eiM9CmkBxLEO3k0wk8HYrRtGi_xNZhuaY6xIeopMAuPYz6MLSCsDJPcWqLnW3F_vfmiw9vT9qb3X-v-hi2BYIninkU6R6MLlfr8ARu-CvUgtU-bOr5dL_T9p-vTQIw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UrdiCeFmrrlYdxQdfQjMzmWQHfBF1aXF3EW2hT4a5BRZttm66ffYn-Bv7S3pOblJUEHwJCXOSGeack_nmcr4D8NJTnLLnaWSMyqIkkzwy3NLJHGdxQIlDEds62UQ2n4-Pj_XHDXjdxcI0_BD9ght5Rv2_JgenBem9X6yh1eKE5p46vQabCZqRGsDmu0-To2m_i9ClbKVtyjTjqmMWisVe__LV8eg3kHkVs9aDzuT2_zX3DtxqwSZ701jHXdgI5RBuzNrt9CHcbBbtWBOLNIRtgp4Nc_M9-IIWxKrTxddw8eOnKT1e0Xws-75GZWAT2JQoIRmCXrZa2nV1xs5x3k2RWKyqk-ugxtmiZI7sasWIDPYEP8yq5uTiDhxN3h--3Y_abAyRk0qmkVXcZDYQYZf2wmcqS5Th2omggk9ojNOmUNZq6YMo4qCFdc6J1BQGp8E6kfdhUC7L8BCYtzJRmTZOaouAsRjzAh-49doiAjRqBK86neSupSqnjBnf8oZkWeTYmXndmSN40YueNvwcfxLa7RSbty5a5ZJjCeKddDyC530xOhftmJgyLNckQ4yISgps0oPGIPpaEFimMU5usbG13v9eff75YFbfPPp30WewtX84m-bTg_mHx7AtEEpRBKSId2FwtlqHJ3DdnaNFrJ62Rn8JB_AFOA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qK6VQqp7aXq26ig--hCa72eQWfBHrYfF6FLXQJ8P-Cxza3PXS67Mfwc_oJ3Emm0SKCoIvIWE32WVnJvub3Z3fALxwFKfskizSWuZRmosk0omhkznW4IQS-zI2TbKJfDodnZ-r0zV41cXCBH6IfsGNLKP5X5OB-4UrD3-xhtazC_I9VXYLNlKpMjTLjaMP47NJv4vQpWylbcosT2THLBTzw_7lm_PRbyDzJmZtJp3xnf_r7l3YacEmex204x6s-WoAmyftdvoAtsOiHQuxSAPYIugZmJvvw2fUIFYvZl_8j2_fdeXwiupj2OUKhYFdYBOihGQIetlyblb1FbtGv5sisVjdJNdBibNZxSzp1ZIRGewFfpjV4eTiAzgbv_305l3UZmOIrJAii4xMdG48EXYpx10u81TqRFnupXcpzXFKl9IYJZznZewVN9ZanulSoxusUvEQ1qt55feAOSNSmStthTIIGMtRUuJDYpwyiAC1HMLLTiaFbanKKWPG1yKQLPMCB7NoBnMIz_uqi8DP8adKB51gi9ZE60IkWIJ4JxsN4VlfjMZFOya68vMV1SFGRCk4dmk3KETfCgLLLEbnFjvbyP3vzRcfj0-am_1_r_oUNk-PxsXkePr-EWxxRFIUAMnjA1i_Wq78Y7htr1Ehlk9anf8Ji_gEsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+spike-and-slab+quantile+LASSO+for+robust+variable+selection+in+cancer+genomics+studies&rft.jtitle=Statistics+in+medicine&rft.au=Liu%2C+Yuwen&rft.au=Ren%2C+Jie&rft.au=Ma%2C+Shuangge&rft.au=Wu%2C+Cen&rft.date=2024-11-20&rft.eissn=1097-0258&rft.volume=43&rft.issue=26&rft.spage=4928&rft_id=info:doi/10.1002%2Fsim.10196&rft_id=info%3Apmid%2F39260448&rft.externalDocID=39260448 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |