Accelerated 3D‐GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling

Purpose To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy. Methods Five subjects were sc...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 80; no. 6; pp. 2475 - 2484
Main Authors: Boland, Markus, Stirnberg, Rüdiger, Pracht, Eberhard D., Kramme, Johanna, Viviani, Roberto, Stingl, Julia, Stöcker, Tony
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.12.2018
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy. Methods Five subjects were scanned on a 3T MRI scanner using the pseudo‐continuous arterial spin labeling (PCASL) technique with a 3D‐GRASE imaging sequence capable of parallel imaging acceleration. A 3‐inversion pulse background suppression was simulated and implemented in the sequence. Three time‐matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW. Three time‐matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure. Results The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non‐accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration. Conclusion Accelerated single‐shot 3D‐GRASE with PCASL allows for smaller quantification uncertainties than time‐matched segmented acquisitions. Corresponding single‐shot acquisitions with acceptable blurring and no intra‐volume motion render state‐of‐the‐art ASL methods in a clinically feasible time possible.
AbstractList Purpose To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy. Methods Five subjects were scanned on a 3T MRI scanner using the pseudo‐continuous arterial spin labeling (PCASL) technique with a 3D‐GRASE imaging sequence capable of parallel imaging acceleration. A 3‐inversion pulse background suppression was simulated and implemented in the sequence. Three time‐matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW. Three time‐matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure. Results The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non‐accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration. Conclusion Accelerated single‐shot 3D‐GRASE with PCASL allows for smaller quantification uncertainties than time‐matched segmented acquisitions. Corresponding single‐shot acquisitions with acceptable blurring and no intra‐volume motion render state‐of‐the‐art ASL methods in a clinically feasible time possible.
PurposeTo investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy.MethodsFive subjects were scanned on a 3T MRI scanner using the pseudo‐continuous arterial spin labeling (PCASL) technique with a 3D‐GRASE imaging sequence capable of parallel imaging acceleration. A 3‐inversion pulse background suppression was simulated and implemented in the sequence. Three time‐matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW. Three time‐matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.ResultsThe single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non‐accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.ConclusionAccelerated single‐shot 3D‐GRASE with PCASL allows for smaller quantification uncertainties than time‐matched segmented acquisitions. Corresponding single‐shot acquisitions with acceptable blurring and no intra‐volume motion render state‐of‐the‐art ASL methods in a clinically feasible time possible.
To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNR ) and quantification accuracy. Five subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNR . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure. The single PLD measurements show an 11% TSNR increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNR compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration. Accelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible.
To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNRPW ) and quantification accuracy.PURPOSETo investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNRPW ) and quantification accuracy.Five subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.METHODSFive subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.RESULTSThe single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.Accelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible.CONCLUSIONAccelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible.
Author Pracht, Eberhard D.
Kramme, Johanna
Viviani, Roberto
Stirnberg, Rüdiger
Stöcker, Tony
Boland, Markus
Stingl, Julia
Author_xml – sequence: 1
  givenname: Markus
  surname: Boland
  fullname: Boland, Markus
  organization: German Center for Neurodegenerative Diseases (DZNE)
– sequence: 2
  givenname: Rüdiger
  surname: Stirnberg
  fullname: Stirnberg, Rüdiger
  organization: German Center for Neurodegenerative Diseases (DZNE)
– sequence: 3
  givenname: Eberhard D.
  surname: Pracht
  fullname: Pracht, Eberhard D.
  organization: German Center for Neurodegenerative Diseases (DZNE)
– sequence: 4
  givenname: Johanna
  surname: Kramme
  fullname: Kramme, Johanna
  organization: German Center for Neurodegenerative Diseases (DZNE)
– sequence: 5
  givenname: Roberto
  surname: Viviani
  fullname: Viviani, Roberto
  organization: University of Ulm
– sequence: 6
  givenname: Julia
  surname: Stingl
  fullname: Stingl, Julia
  organization: Federal Institute for Drugs and Medical Devices (BfArM)
– sequence: 7
  givenname: Tony
  surname: Stöcker
  fullname: Stöcker, Tony
  email: tony.stoecker@dzne.de
  organization: University of Bonn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29770492$$D View this record in MEDLINE/PubMed
BookMark eNp1kctuFDEQRS0UlEweC34AtcQGFp342Y6XoyQEpERICayt6u7q4Mj9iO0Omh2fwDfyJXgyExYRrGrhc6-r7t0nO8M4ICFvGD1mlPKTPvTHXHNevSILpjgvuTJyhyyolrQUzMg9sh_jPaXUGC13yR43WlNp-IJ8XzYNegyQsC3E-e-fvy5vlrcXhevhzg13eU5hfMRYPMwwJJcguUcs-tknN3kspjGmwkONfg236GFVQEgYHPgiTm74-3hIXnfgIx5t5wH59vHi69mn8urL5eez5VXZCCWqkjXQKNqdylpx1gnBaS3AYC1aKaRSGoyRqtWVlPVpWxkBbdVB3ZkGjFCMC3FA3m98894PM8ZkexfziR4GHOdoOZVUV1pKmtF3L9D7cQ5D3s5yxiu9_lBm6u2WmuseWzuFnE1Y2ecMM3CyAZowxhiws81TTuOQAjhvGbXrlmxuyT61lBUfXiieTf_Fbt1_OI-r_4P2-uZ6o_gDvtShZA
CitedBy_id crossref_primary_10_1002_mrm_29381
crossref_primary_10_1016_j_clinimag_2018_11_001
crossref_primary_10_1016_j_pediatrneurol_2019_03_001
crossref_primary_10_1016_j_neuroimage_2019_116337
crossref_primary_10_1002_mrm_29234
crossref_primary_10_1002_nbm_4224
crossref_primary_10_1002_mrm_29681
crossref_primary_10_3390_metabo12090882
crossref_primary_10_1002_mrm_30439
crossref_primary_10_1002_nbm_4374
crossref_primary_10_3389_fnins_2021_711898
crossref_primary_10_1002_mrm_27862
crossref_primary_10_1371_journal_pone_0255681
crossref_primary_10_1002_mrm_28205
crossref_primary_10_1038_s41596_024_01085_w
crossref_primary_10_1038_s41598_020_74680_y
crossref_primary_10_1007_s00221_018_5378_0
crossref_primary_10_3389_fphys_2023_1271254
crossref_primary_10_3390_brainsci14111158
crossref_primary_10_1002_mrm_30091
crossref_primary_10_3389_fnagi_2022_951022
crossref_primary_10_1016_j_media_2021_102067
crossref_primary_10_1186_s12880_024_01249_w
Cites_doi 10.1002/mrm.21790
10.1002/mrm.24335
10.1002/mrm.23007
10.1016/j.neuroimage.2012.10.087
10.1007/s10334-011-0286-3
10.1006/nimg.2002.1132
10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X
10.1016/S1053-8119(03)00336-7
10.1109/TSP.2008.2005752
10.3174/ajnr.A2008
10.1002/jmri.23581
10.1002/mrm.25846
10.1016/j.rcl.2009.05.003
10.1016/0022-2364(91)90253-P
10.1371/journal.pone.0183762
10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
10.1006/jmrb.1994.1048
10.1002/mrm.1910400308
10.1088/0031-9155/59/18/5559
10.1002/mrm.25197
10.1002/mrm.22768
10.1038/mp.2010.42
10.1002/mrm.22266
10.1002/mrm.20787
10.1002/mrm.22320
10.1177/0271678X16646124
10.1002/mrm.20580
10.1002/mrm.21122
10.1109/42.906424
10.1016/j.neuroimage.2010.09.025
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27226
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2484
ExternalDocumentID 29770492
10_1002_mrm_27226
MRM27226
Genre article
Journal Article
GrantInformation_xml – fundername: Federal Institute for Drugs and Medical Devices
  funderid: V‐15840/68502/2014‐17
– fundername: Federal Institute for Drugs and Medical Devices
  grantid: V-15840/68502/2014-17
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3536-1cac50f84b521f3320b3a9eb3d434557a9945d7644b8d693ad6fabf9ca9351233
IEDL.DBID DRFUL
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450220400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 13:07:53 EDT 2025
Sat Nov 29 14:21:24 EST 2025
Wed Feb 19 02:35:39 EST 2025
Tue Nov 18 21:38:39 EST 2025
Sat Nov 29 02:37:45 EST 2025
Wed Jan 22 16:56:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 3D-GRASE
cerebral blood flow
single-shot
multiple post labeling delay
perfusion
pseudo-continuous arterial spin labeling
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3536-1cac50f84b521f3320b3a9eb3d434557a9945d7644b8d693ad6fabf9ca9351233
Notes Funding information
Federal Institute for Drugs and Medical Devices, Grant/Award Number: V‐15840/68502/2014‐17
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29770492
PQID 2126734554
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_2040767440
proquest_journals_2126734554
pubmed_primary_29770492
crossref_citationtrail_10_1002_mrm_27226
crossref_primary_10_1002_mrm_27226
wiley_primary_10_1002_mrm_27226_MRM27226
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
2018-Dec
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 17
2009; 47
2010; 31
2013; 69
2013; 66
2015; 73
2006; 55
2000; 44
2016; 75
2007
2011; 54
2012; 35
2011; 16
1998; 40
2007; 57
2010; 63
2016; 36
2001; 20
2009; 57
1994; 104
1997; 10
2017; 12
1991; 92
2014; 59
2011; 66
2005; 54
2012; 25
2012; 67
2008; 60
2003; 20
1988
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 57
  start-page: 308
  year: 2007
  end-page: 318
  article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo
  publication-title: Magn Reson Med.
– volume: 63
  start-page: 1357
  year: 2010
  end-page: 1365
  article-title: Separation of macrovascular signal in multi‐inversion time arterial spin labelling MRI
  publication-title: Magn Reson Med.
– volume: 55
  start-page: 549
  year: 2006
  end-page: 556
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imaging.
– volume: 31
  start-page: 1892
  year: 2010
  end-page: 1894
  article-title: Multiple inflow pulsed arterial spin‐labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack
  publication-title: AJNR Am J Neuroradiol.
– volume: 66
  start-page: 662
  year: 2013
  end-page: 671
  article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences
  publication-title: Neuroimage.
– volume: 59
  start-page: 5559
  year: 2014
  end-page: 5573
  article-title: A variable flip angle‐based method for reducing blurring in 3D GRASE ASL
  publication-title: Phys Med Biol.
– year: 2007
– volume: 36
  start-page: 1244
  year: 2016
  end-page: 1256
  article-title: Comparison of non‐invasive MRI measurements of cerebral blood flow in a large multisite cohort
  publication-title: J Cereb Blood Flow Metab.
– volume: 67
  start-page: 344
  year: 2012
  end-page: 352
  article-title: Temporal SNR characteristics in segmented 3D‐EPI at 7T
  publication-title: Magn Reson Med.
– volume: 69
  start-page: 1014
  year: 2013
  end-page: 1022
  article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling
  publication-title: Magn Reson Med.
– volume: 57
  start-page: 223
  year: 2009
  end-page: 236
  article-title: Variational Bayesian inference for a nonlinear forward model
  publication-title: IEEE Trans Signal Process.
– volume: 66
  start-page: 168
  year: 2011
  end-page: 173
  article-title: 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging
  publication-title: Magn Reson Med.
– volume: 47
  start-page: 827
  year: 2009
  end-page: 831
  article-title: Nephrogenic systemic fibrosis: history and epidemiology
  publication-title: Radiol Clin North Am.
– volume: 25
  start-page: 127
  year: 2012
  end-page: 133
  article-title: Optimization of background suppression for arterial spin labeling perfusion imaging
  publication-title: Magn Reson Mater Physics Biol Med.
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage.
– volume: 63
  start-page: 1111
  year: 2010
  end-page: 1118
  article-title: In vivo hadamard encoded continuous arterial spin labeling (H‐CASL)
  publication-title: Magn Reson Med.
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging
  publication-title: Neuroimage.
– volume: 12
  start-page: e0183762
  year: 2017
  article-title: Whole‐brain background‐suppressed pCASL MRI with 1D‐accelerated 3D RARE stack‐of‐spirals readout
  publication-title: PLoS One.
– volume: 92
  start-page: 126
  year: 1991
  end-page: 145
  article-title: A fast, iterative, partial‐fourier technique capable of local phase recovery
  publication-title: J Magn Reson.
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med.
– volume: 104
  start-page: 1
  year: 1994
  end-page: 10
  article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy
  publication-title: J Magn Reson B.
– year: 1988
– volume: 44
  start-page: 92
  year: 2000
  end-page: 100
  article-title: Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST)
  publication-title: Magn Reson Med.
– volume: 35
  start-page: 1026
  year: 2012
  end-page: 1037
  article-title: Applications of arterial spin labeled MRI in the brain
  publication-title: J Magn Reson Imaging.
– volume: 75
  start-page: 2362
  year: 2016
  end-page: 2371
  article-title: Improvement of temporal signal‐to‐noise ratio of GRAPPA accelerated echo planar imaging using a FLASH based calibration scan
  publication-title: Magn Reson Med.
– volume: 54
  start-page: 491
  year: 2005
  end-page: 498
  article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med.
– volume: 16
  start-page: 333
  issue: 237
  year: 2011
  end-page: 341
  article-title: CYP2D6 in the brain: genotype effects on resting brain perfusion
  publication-title: Mol Psychiatry.
– volume: 10
  start-page: 423
  year: 1997
  end-page: 434
  article-title: Adiabatic pulses
  publication-title: NMR Biomed.
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med.
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med.
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.21790
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.24335
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.23007
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2012.10.087
– ident: e_1_2_7_16_1
  doi: 10.1007/s10334-011-0286-3
– ident: e_1_2_7_22_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X
– ident: e_1_2_7_23_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_7_27_1
  doi: 10.1109/TSP.2008.2005752
– ident: e_1_2_7_5_1
  doi: 10.3174/ajnr.A2008
– ident: e_1_2_7_3_1
  doi: 10.1002/jmri.23581
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.25846
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rcl.2009.05.003
– ident: e_1_2_7_20_1
  doi: 10.1016/0022-2364(91)90253-P
– ident: e_1_2_7_7_1
  doi: 10.1371/journal.pone.0183762
– ident: e_1_2_7_9_1
  doi: 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
– ident: e_1_2_7_14_1
  doi: 10.1006/jmrb.1994.1048
– ident: e_1_2_7_19_1
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.1910400308
– ident: e_1_2_7_10_1
  doi: 10.1088/0031-9155/59/18/5559
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.22768
– ident: e_1_2_7_4_1
  doi: 10.1038/mp.2010.42
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.22266
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.20787
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.22320
– ident: e_1_2_7_29_1
  doi: 10.1177/0271678X16646124
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.20580
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.21122
– ident: e_1_2_7_24_1
  doi: 10.1109/42.906424
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_7_31_1
SSID ssj0009974
Score 2.404408
Snippet Purpose To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single...
To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling...
PurposeTo investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2475
SubjectTerms 3D‐GRASE
Acceleration
Blood flow
Blurring
Cerebral blood flow
Delay
Imaging
Labeling
Magnetic resonance imaging
multiple post labeling delay
Perfusion
Programmable logic controllers
pseudo‐continuous arterial spin labeling
Sampling
Shot
single‐shot
Spin labeling
Substantia alba
Substantia grisea
Time measurement
Transit time
Uncertainty
Title Accelerated 3D‐GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27226
https://www.ncbi.nlm.nih.gov/pubmed/29770492
https://www.proquest.com/docview/2126734554
https://www.proquest.com/docview/2040767440
Volume 80
WOSCitedRecordID wos000450220400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9tHZt44c82oDAqg_bAS9Y0dhJbPFVsBaS2Qt0m-hY5diwqrWlpWiTe-Ah8Rj4JZ-fPNDGkSXtKLF8Uy3fn-9k-_wxwjBGOYpzG2YnRxmOyF3gSA4mnFDfajywId5oexuMxn07Fly14X5-FKfkhmgU36xluvLYOLtOie00aOl_NT4IY0cM27ARot2ELdk4ng8vhNeeuKEmYY2aHGsFqYiE_6DYf3wxH_2DMm5DVxZzB43u19gk8qqAm6Ze28RS2snwf9kbVZvo-7LrsT1UcwLe-Uhh-LGuEJvT0z6_fHyf98zMym7s7jPBpVx6ygnzfyNydSsMxktS5iGS5KNYErckdbSeWdvIncamiaNukWM7ypvIQLgdnFx8-edUVDJ6iIY28npIq9A1nKYZ5g1r1UyoFTsA1oywMYykEC3WMoCrlOhJU6sjI1AglBUUoQekzaOWLPHsBRBqfKx1xnirFwkwjtMdyavyM9mjGgza8qzWRqIqf3F6TcZWUzMpBgn2YuD5sw9tGdFmSctwmdFSrM6n8skgwUEexbTlrw5umGj3KbpPIPFtsUAbHNUtxxPw2PC_NoPlLgHAZ51S2sU7b__99MpqM3MvLu4u-goeIx3iZLXMErfVqk72GB-rHelasOrAdT3mnMnIsff08_gudGP-s
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED91g_15ATZg6yhg0B54CUtjJ7ElXirY2ERboTG0vkWOHWuVaNo1LRJv-wh8Rj7Jzs6faRpISHtKIl9ky3f2_Wyffwewjx6Oop_G1YnRxmOyG3gSHYmnFDfajywId5rux8MhH43E1xZ8qO_ClPwQzYabHRluvrYD3G5IH9ywhk7mk_dBjPBhBR4wBBo2ccP5yfCGcleUHMwxszONYDWvkB8cNL_e9kZ3IOZtxOpcztHj-zX2CTyqoCbplbaxBa0s34b1QXWYvg1rLvpTFU_hoqcUuh_LGqEJ_fTn6vfn0963QzKeuBxG-LQ7D1lBLpcyd7fScI4kdSwimU2LBUFrclfbiaWd_EVcqCjaNilm47wpfAbfjw7PPh57VQoGT9GQRl5XSRX6hrMU3bxBrfoplQIX4JpRFoaxFIKFOkZQlXIdCSp1ZGRqhJKCIpSg9Dms5tM82wUijc-VjjhPlWJhphHa43dq_Ix2acaDNryrVZGoip_cpsn4kZTMykGCfZi4PmzD20Z0VpJy_E2oU-szqcZlkaCjjmLbctaGN00xjih7TCLzbLpEGZzXLMUR89uwU9pBU0uAcBnXVLaxTt3_rj4ZnA7cy97_i76GjeOzQT_pnwy_vIBNxGa8jJzpwOpivsxewkP1czEu5q-cpV8DygoAhg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VFKpeeBRoUwoYxIHLtpu1d9eWuESkAUQSVYFKva28fohIZJNmEyRu_AR-Y38JY--jqgAJidPuyrOy5Rl7PtvjbwBeoYej6KdxdWK1DZjsRYFERxIoxa0OEwfCvaZH6WTCLy7E2Ra8ae7CVPwQ7YabGxl-vnYD3Cy1PblmDZ2v5sdRivDhFmwzl0SmA9uD6fB8dE26KyoW5pS5uUawhlkojE7an2_6o99A5k3M6p3O8N7_Nfc-3K3BJulX1vEAtkyxBzvj-jh9D-74-E9VPoQvfaXQATneCE3o4OrHz3fT_qdTMpv7LEb4dHsPpiSXG1n4e2k4S5ImGpEsF-WaoD35y-3EEU9-Jz5YFK2blMtZ0RY-gvPh6ee374M6CUOgaEyToKekikPLWY6O3qJew5xKgUtwzSiL41QKwWKdIqzKuU4ElTqxMrdCSUERTFD6GDrFojAHQKQNudIJ57lSLDYawT1-5zY0tEcNj7rwulFFpmqGcpco42tWcStHGfZh5vuwCy9b0WVFy_EnoaNGn1k9MssMXXWSupazLrxoi3FMuYMSWZjFBmVwZnMkRyzswn5lB20tEQJmXFW5xnp1_736bDwd-5fDfxd9Djtng2E2-jD5-AR2EZzxKnTmCDrr1cY8hdvq23pWrp7Vpv4LZQUBLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+3D%E2%80%90GRASE+imaging+improves+quantitative+multiple+post+labeling+delay+arterial+spin+labeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Boland%2C+Markus&rft.au=Stirnberg%2C+R%C3%BCdiger&rft.au=Pracht%2C+Eberhard+D&rft.au=Kramme%2C+Johanna&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=6&rft.spage=2475&rft_id=info:doi/10.1002%2Fmrm.27226&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon