Accelerated 3D‐GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling
Purpose To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy. Methods Five subjects were sc...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 80; no. 6; pp. 2475 - 2484 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.12.2018
|
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy.
Methods
Five subjects were scanned on a 3T MRI scanner using the pseudo‐continuous arterial spin labeling (PCASL) technique with a 3D‐GRASE imaging sequence capable of parallel imaging acceleration. A 3‐inversion pulse background suppression was simulated and implemented in the sequence. Three time‐matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW. Three time‐matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.
Results
The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non‐accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.
Conclusion
Accelerated single‐shot 3D‐GRASE with PCASL allows for smaller quantification uncertainties than time‐matched segmented acquisitions. Corresponding single‐shot acquisitions with acceptable blurring and no intra‐volume motion render state‐of‐the‐art ASL methods in a clinically feasible time possible. |
|---|---|
| AbstractList | Purpose
To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy.
Methods
Five subjects were scanned on a 3T MRI scanner using the pseudo‐continuous arterial spin labeling (PCASL) technique with a 3D‐GRASE imaging sequence capable of parallel imaging acceleration. A 3‐inversion pulse background suppression was simulated and implemented in the sequence. Three time‐matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW. Three time‐matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.
Results
The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non‐accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.
Conclusion
Accelerated single‐shot 3D‐GRASE with PCASL allows for smaller quantification uncertainties than time‐matched segmented acquisitions. Corresponding single‐shot acquisitions with acceptable blurring and no intra‐volume motion render state‐of‐the‐art ASL methods in a clinically feasible time possible. PurposeTo investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post‐labeling delay (PLD) in terms of perfusion‐weighted SNR per unit scan time (TSNRPW) and quantification accuracy.MethodsFive subjects were scanned on a 3T MRI scanner using the pseudo‐continuous arterial spin labeling (PCASL) technique with a 3D‐GRASE imaging sequence capable of parallel imaging acceleration. A 3‐inversion pulse background suppression was simulated and implemented in the sequence. Three time‐matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW. Three time‐matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.ResultsThe single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non‐accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.ConclusionAccelerated single‐shot 3D‐GRASE with PCASL allows for smaller quantification uncertainties than time‐matched segmented acquisitions. Corresponding single‐shot acquisitions with acceptable blurring and no intra‐volume motion render state‐of‐the‐art ASL methods in a clinically feasible time possible. To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNR ) and quantification accuracy. Five subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNR . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure. The single PLD measurements show an 11% TSNR increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNR compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration. Accelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible. To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNRPW ) and quantification accuracy.PURPOSETo investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNRPW ) and quantification accuracy.Five subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.METHODSFive subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure.The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.RESULTSThe single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration.Accelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible.CONCLUSIONAccelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible. |
| Author | Pracht, Eberhard D. Kramme, Johanna Viviani, Roberto Stirnberg, Rüdiger Stöcker, Tony Boland, Markus Stingl, Julia |
| Author_xml | – sequence: 1 givenname: Markus surname: Boland fullname: Boland, Markus organization: German Center for Neurodegenerative Diseases (DZNE) – sequence: 2 givenname: Rüdiger surname: Stirnberg fullname: Stirnberg, Rüdiger organization: German Center for Neurodegenerative Diseases (DZNE) – sequence: 3 givenname: Eberhard D. surname: Pracht fullname: Pracht, Eberhard D. organization: German Center for Neurodegenerative Diseases (DZNE) – sequence: 4 givenname: Johanna surname: Kramme fullname: Kramme, Johanna organization: German Center for Neurodegenerative Diseases (DZNE) – sequence: 5 givenname: Roberto surname: Viviani fullname: Viviani, Roberto organization: University of Ulm – sequence: 6 givenname: Julia surname: Stingl fullname: Stingl, Julia organization: Federal Institute for Drugs and Medical Devices (BfArM) – sequence: 7 givenname: Tony surname: Stöcker fullname: Stöcker, Tony email: tony.stoecker@dzne.de organization: University of Bonn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29770492$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctuFDEQRS0UlEweC34AtcQGFp342Y6XoyQEpERICayt6u7q4Mj9iO0Omh2fwDfyJXgyExYRrGrhc6-r7t0nO8M4ICFvGD1mlPKTPvTHXHNevSILpjgvuTJyhyyolrQUzMg9sh_jPaXUGC13yR43WlNp-IJ8XzYNegyQsC3E-e-fvy5vlrcXhevhzg13eU5hfMRYPMwwJJcguUcs-tknN3kspjGmwkONfg236GFVQEgYHPgiTm74-3hIXnfgIx5t5wH59vHi69mn8urL5eez5VXZCCWqkjXQKNqdylpx1gnBaS3AYC1aKaRSGoyRqtWVlPVpWxkBbdVB3ZkGjFCMC3FA3m98894PM8ZkexfziR4GHOdoOZVUV1pKmtF3L9D7cQ5D3s5yxiu9_lBm6u2WmuseWzuFnE1Y2ecMM3CyAZowxhiws81TTuOQAjhvGbXrlmxuyT61lBUfXiieTf_Fbt1_OI-r_4P2-uZ6o_gDvtShZA |
| CitedBy_id | crossref_primary_10_1002_mrm_29381 crossref_primary_10_1016_j_clinimag_2018_11_001 crossref_primary_10_1016_j_pediatrneurol_2019_03_001 crossref_primary_10_1016_j_neuroimage_2019_116337 crossref_primary_10_1002_mrm_29234 crossref_primary_10_1002_nbm_4224 crossref_primary_10_1002_mrm_29681 crossref_primary_10_3390_metabo12090882 crossref_primary_10_1002_mrm_30439 crossref_primary_10_1002_nbm_4374 crossref_primary_10_3389_fnins_2021_711898 crossref_primary_10_1002_mrm_27862 crossref_primary_10_1371_journal_pone_0255681 crossref_primary_10_1002_mrm_28205 crossref_primary_10_1038_s41596_024_01085_w crossref_primary_10_1038_s41598_020_74680_y crossref_primary_10_1007_s00221_018_5378_0 crossref_primary_10_3389_fphys_2023_1271254 crossref_primary_10_3390_brainsci14111158 crossref_primary_10_1002_mrm_30091 crossref_primary_10_3389_fnagi_2022_951022 crossref_primary_10_1016_j_media_2021_102067 crossref_primary_10_1186_s12880_024_01249_w |
| Cites_doi | 10.1002/mrm.21790 10.1002/mrm.24335 10.1002/mrm.23007 10.1016/j.neuroimage.2012.10.087 10.1007/s10334-011-0286-3 10.1006/nimg.2002.1132 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X 10.1016/S1053-8119(03)00336-7 10.1109/TSP.2008.2005752 10.3174/ajnr.A2008 10.1002/jmri.23581 10.1002/mrm.25846 10.1016/j.rcl.2009.05.003 10.1016/0022-2364(91)90253-P 10.1371/journal.pone.0183762 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M 10.1006/jmrb.1994.1048 10.1002/mrm.1910400308 10.1088/0031-9155/59/18/5559 10.1002/mrm.25197 10.1002/mrm.22768 10.1038/mp.2010.42 10.1002/mrm.22266 10.1002/mrm.20787 10.1002/mrm.22320 10.1177/0271678X16646124 10.1002/mrm.20580 10.1002/mrm.21122 10.1109/42.906424 10.1016/j.neuroimage.2010.09.025 |
| ContentType | Journal Article |
| Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 |
| DOI | 10.1002/mrm.27226 |
| DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 2484 |
| ExternalDocumentID | 29770492 10_1002_mrm_27226 MRM27226 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Federal Institute for Drugs and Medical Devices funderid: V‐15840/68502/2014‐17 – fundername: Federal Institute for Drugs and Medical Devices grantid: V-15840/68502/2014-17 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 8FD FR3 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c3536-1cac50f84b521f3320b3a9eb3d434557a9945d7644b8d693ad6fabf9ca9351233 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450220400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Fri Jul 11 13:07:53 EDT 2025 Sat Nov 29 14:21:24 EST 2025 Wed Feb 19 02:35:39 EST 2025 Tue Nov 18 21:38:39 EST 2025 Sat Nov 29 02:37:45 EST 2025 Wed Jan 22 16:56:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | 3D-GRASE cerebral blood flow single-shot multiple post labeling delay perfusion pseudo-continuous arterial spin labeling |
| Language | English |
| License | 2018 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3536-1cac50f84b521f3320b3a9eb3d434557a9945d7644b8d693ad6fabf9ca9351233 |
| Notes | Funding information Federal Institute for Drugs and Medical Devices, Grant/Award Number: V‐15840/68502/2014‐17 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 29770492 |
| PQID | 2126734554 |
| PQPubID | 1016391 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2040767440 proquest_journals_2126734554 pubmed_primary_29770492 crossref_citationtrail_10_1002_mrm_27226 crossref_primary_10_1002_mrm_27226 wiley_primary_10_1002_mrm_27226_MRM27226 |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 2018-12-00 2018-Dec 20181201 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2002; 17 2009; 47 2010; 31 2013; 69 2013; 66 2015; 73 2006; 55 2000; 44 2016; 75 2007 2011; 54 2012; 35 2011; 16 1998; 40 2007; 57 2010; 63 2016; 36 2001; 20 2009; 57 1994; 104 1997; 10 2017; 12 1991; 92 2014; 59 2011; 66 2005; 54 2012; 25 2012; 67 2008; 60 2003; 20 1988 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 57 start-page: 308 year: 2007 end-page: 318 article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo publication-title: Magn Reson Med. – volume: 63 start-page: 1357 year: 2010 end-page: 1365 article-title: Separation of macrovascular signal in multi‐inversion time arterial spin labelling MRI publication-title: Magn Reson Med. – volume: 55 start-page: 549 year: 2006 end-page: 556 article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) publication-title: Magn Reson Med. – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage. – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imaging. – volume: 31 start-page: 1892 year: 2010 end-page: 1894 article-title: Multiple inflow pulsed arterial spin‐labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack publication-title: AJNR Am J Neuroradiol. – volume: 66 start-page: 662 year: 2013 end-page: 671 article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences publication-title: Neuroimage. – volume: 59 start-page: 5559 year: 2014 end-page: 5573 article-title: A variable flip angle‐based method for reducing blurring in 3D GRASE ASL publication-title: Phys Med Biol. – year: 2007 – volume: 36 start-page: 1244 year: 2016 end-page: 1256 article-title: Comparison of non‐invasive MRI measurements of cerebral blood flow in a large multisite cohort publication-title: J Cereb Blood Flow Metab. – volume: 67 start-page: 344 year: 2012 end-page: 352 article-title: Temporal SNR characteristics in segmented 3D‐EPI at 7T publication-title: Magn Reson Med. – volume: 69 start-page: 1014 year: 2013 end-page: 1022 article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling publication-title: Magn Reson Med. – volume: 57 start-page: 223 year: 2009 end-page: 236 article-title: Variational Bayesian inference for a nonlinear forward model publication-title: IEEE Trans Signal Process. – volume: 66 start-page: 168 year: 2011 end-page: 173 article-title: 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging publication-title: Magn Reson Med. – volume: 47 start-page: 827 year: 2009 end-page: 831 article-title: Nephrogenic systemic fibrosis: history and epidemiology publication-title: Radiol Clin North Am. – volume: 25 start-page: 127 year: 2012 end-page: 133 article-title: Optimization of background suppression for arterial spin labeling perfusion imaging publication-title: Magn Reson Mater Physics Biol Med. – volume: 54 start-page: 2033 year: 2011 end-page: 2044 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage. – volume: 63 start-page: 1111 year: 2010 end-page: 1118 article-title: In vivo hadamard encoded continuous arterial spin labeling (H‐CASL) publication-title: Magn Reson Med. – volume: 20 start-page: 870 year: 2003 end-page: 888 article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging publication-title: Neuroimage. – volume: 12 start-page: e0183762 year: 2017 article-title: Whole‐brain background‐suppressed pCASL MRI with 1D‐accelerated 3D RARE stack‐of‐spirals readout publication-title: PLoS One. – volume: 92 start-page: 126 year: 1991 end-page: 145 article-title: A fast, iterative, partial‐fourier technique capable of local phase recovery publication-title: J Magn Reson. – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med. – volume: 104 start-page: 1 year: 1994 end-page: 10 article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy publication-title: J Magn Reson B. – year: 1988 – volume: 44 start-page: 92 year: 2000 end-page: 100 article-title: Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST) publication-title: Magn Reson Med. – volume: 35 start-page: 1026 year: 2012 end-page: 1037 article-title: Applications of arterial spin labeled MRI in the brain publication-title: J Magn Reson Imaging. – volume: 75 start-page: 2362 year: 2016 end-page: 2371 article-title: Improvement of temporal signal‐to‐noise ratio of GRAPPA accelerated echo planar imaging using a FLASH based calibration scan publication-title: Magn Reson Med. – volume: 54 start-page: 491 year: 2005 end-page: 498 article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med. – volume: 16 start-page: 333 issue: 237 year: 2011 end-page: 341 article-title: CYP2D6 in the brain: genotype effects on resting brain perfusion publication-title: Mol Psychiatry. – volume: 10 start-page: 423 year: 1997 end-page: 434 article-title: Adiabatic pulses publication-title: NMR Biomed. – volume: 60 start-page: 1488 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med. – volume: 40 start-page: 383 year: 1998 end-page: 396 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn Reson Med. – ident: e_1_2_7_13_1 doi: 10.1002/mrm.21790 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.24335 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.23007 – ident: e_1_2_7_17_1 doi: 10.1016/j.neuroimage.2012.10.087 – ident: e_1_2_7_16_1 doi: 10.1007/s10334-011-0286-3 – ident: e_1_2_7_22_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_7_15_1 doi: 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X – ident: e_1_2_7_23_1 doi: 10.1016/S1053-8119(03)00336-7 – ident: e_1_2_7_27_1 doi: 10.1109/TSP.2008.2005752 – ident: e_1_2_7_5_1 doi: 10.3174/ajnr.A2008 – ident: e_1_2_7_3_1 doi: 10.1002/jmri.23581 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.25846 – ident: e_1_2_7_2_1 doi: 10.1016/j.rcl.2009.05.003 – ident: e_1_2_7_20_1 doi: 10.1016/0022-2364(91)90253-P – ident: e_1_2_7_7_1 doi: 10.1371/journal.pone.0183762 – ident: e_1_2_7_9_1 doi: 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M – ident: e_1_2_7_14_1 doi: 10.1006/jmrb.1994.1048 – ident: e_1_2_7_19_1 – ident: e_1_2_7_26_1 doi: 10.1002/mrm.1910400308 – ident: e_1_2_7_10_1 doi: 10.1088/0031-9155/59/18/5559 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.25197 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.22768 – ident: e_1_2_7_4_1 doi: 10.1038/mp.2010.42 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.22266 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.20787 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.22320 – ident: e_1_2_7_29_1 doi: 10.1177/0271678X16646124 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.20580 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.21122 – ident: e_1_2_7_24_1 doi: 10.1109/42.906424 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_7_31_1 |
| SSID | ssj0009974 |
| Score | 2.404408 |
| Snippet | Purpose
To investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single... To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling... PurposeTo investigate the impact of accelerated, single‐shot 3D‐GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2475 |
| SubjectTerms | 3D‐GRASE Acceleration Blood flow Blurring Cerebral blood flow Delay Imaging Labeling Magnetic resonance imaging multiple post labeling delay Perfusion Programmable logic controllers pseudo‐continuous arterial spin labeling Sampling Shot single‐shot Spin labeling Substantia alba Substantia grisea Time measurement Transit time Uncertainty |
| Title | Accelerated 3D‐GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27226 https://www.ncbi.nlm.nih.gov/pubmed/29770492 https://www.proquest.com/docview/2126734554 https://www.proquest.com/docview/2040767440 |
| Volume | 80 |
| WOSCitedRecordID | wos000450220400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9tHZt44c82oDAqg_bAS9Y0dhJbPFVsBaS2Qt0m-hY5diwqrWlpWiTe-Ah8Rj4JZ-fPNDGkSXtKLF8Uy3fn-9k-_wxwjBGOYpzG2YnRxmOyF3gSA4mnFDfajywId5oexuMxn07Fly14X5-FKfkhmgU36xluvLYOLtOie00aOl_NT4IY0cM27ARot2ELdk4ng8vhNeeuKEmYY2aHGsFqYiE_6DYf3wxH_2DMm5DVxZzB43u19gk8qqAm6Ze28RS2snwf9kbVZvo-7LrsT1UcwLe-Uhh-LGuEJvT0z6_fHyf98zMym7s7jPBpVx6ygnzfyNydSsMxktS5iGS5KNYErckdbSeWdvIncamiaNukWM7ypvIQLgdnFx8-edUVDJ6iIY28npIq9A1nKYZ5g1r1UyoFTsA1oywMYykEC3WMoCrlOhJU6sjI1AglBUUoQekzaOWLPHsBRBqfKx1xnirFwkwjtMdyavyM9mjGgza8qzWRqIqf3F6TcZWUzMpBgn2YuD5sw9tGdFmSctwmdFSrM6n8skgwUEexbTlrw5umGj3KbpPIPFtsUAbHNUtxxPw2PC_NoPlLgHAZ51S2sU7b__99MpqM3MvLu4u-goeIx3iZLXMErfVqk72GB-rHelasOrAdT3mnMnIsff08_gudGP-s |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED91g_15ATZg6yhg0B54CUtjJ7ElXirY2ERboTG0vkWOHWuVaNo1LRJv-wh8Rj7Jzs6faRpISHtKIl9ky3f2_Wyffwewjx6Oop_G1YnRxmOyG3gSHYmnFDfajywId5rux8MhH43E1xZ8qO_ClPwQzYabHRluvrYD3G5IH9ywhk7mk_dBjPBhBR4wBBo2ccP5yfCGcleUHMwxszONYDWvkB8cNL_e9kZ3IOZtxOpcztHj-zX2CTyqoCbplbaxBa0s34b1QXWYvg1rLvpTFU_hoqcUuh_LGqEJ_fTn6vfn0963QzKeuBxG-LQ7D1lBLpcyd7fScI4kdSwimU2LBUFrclfbiaWd_EVcqCjaNilm47wpfAbfjw7PPh57VQoGT9GQRl5XSRX6hrMU3bxBrfoplQIX4JpRFoaxFIKFOkZQlXIdCSp1ZGRqhJKCIpSg9Dms5tM82wUijc-VjjhPlWJhphHa43dq_Ix2acaDNryrVZGoip_cpsn4kZTMykGCfZi4PmzD20Z0VpJy_E2oU-szqcZlkaCjjmLbctaGN00xjih7TCLzbLpEGZzXLMUR89uwU9pBU0uAcBnXVLaxTt3_rj4ZnA7cy97_i76GjeOzQT_pnwy_vIBNxGa8jJzpwOpivsxewkP1czEu5q-cpV8DygoAhg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VFKpeeBRoUwoYxIHLtpu1d9eWuESkAUQSVYFKva28fohIZJNmEyRu_AR-Y38JY--jqgAJidPuyrOy5Rl7PtvjbwBeoYej6KdxdWK1DZjsRYFERxIoxa0OEwfCvaZH6WTCLy7E2Ra8ae7CVPwQ7YabGxl-vnYD3Cy1PblmDZ2v5sdRivDhFmwzl0SmA9uD6fB8dE26KyoW5pS5uUawhlkojE7an2_6o99A5k3M6p3O8N7_Nfc-3K3BJulX1vEAtkyxBzvj-jh9D-74-E9VPoQvfaXQATneCE3o4OrHz3fT_qdTMpv7LEb4dHsPpiSXG1n4e2k4S5ImGpEsF-WaoD35y-3EEU9-Jz5YFK2blMtZ0RY-gvPh6ee374M6CUOgaEyToKekikPLWY6O3qJew5xKgUtwzSiL41QKwWKdIqzKuU4ElTqxMrdCSUERTFD6GDrFojAHQKQNudIJ57lSLDYawT1-5zY0tEcNj7rwulFFpmqGcpco42tWcStHGfZh5vuwCy9b0WVFy_EnoaNGn1k9MssMXXWSupazLrxoi3FMuYMSWZjFBmVwZnMkRyzswn5lB20tEQJmXFW5xnp1_736bDwd-5fDfxd9Djtng2E2-jD5-AR2EZzxKnTmCDrr1cY8hdvq23pWrp7Vpv4LZQUBLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+3D%E2%80%90GRASE+imaging+improves+quantitative+multiple+post+labeling+delay+arterial+spin+labeling&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Boland%2C+Markus&rft.au=Stirnberg%2C+R%C3%BCdiger&rft.au=Pracht%2C+Eberhard+D&rft.au=Kramme%2C+Johanna&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=6&rft.spage=2475&rft_id=info:doi/10.1002%2Fmrm.27226&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |