Developing an ultra‐intensified fed‐batch cell culture process with greatly improved performance and productivity

Intensified fed‐batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed‐batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apopto...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biotechnology and bioengineering Ročník 121; číslo 2; s. 696 - 709
Hlavní autori: Xiang, Shaoxun, Zhang, Jinliang, Yu, Le, Tian, Jun, Tang, Wenxiu, Tang, Hao, Xu, Kecui, Wang, Xin, Cui, Yanyan, Ren, Kaidi, Cao, Weijia, Su, Yuning, Zhou, Weichang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.02.2024
Predmet:
ISSN:0006-3592, 1097-0290, 1097-0290
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Intensified fed‐batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed‐batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult‐to‐sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent‐perfusion fed‐batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi‐continuous processes such as hybrid perfusion fed‐batch with only early‐stage perfusion, IPFB applies limited times of intermittent perfusion in the mid‐to‐late stage of production and still inherits bolus feedings on nonperfusion days as in a fed‐batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra‐intensified IPFB (UI‐IPFB) was designed with a markedly elevated seeding density of 20–80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI‐IPFB, up to ~6 folds of traditional fed‐batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad‐based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.
Bibliografia:Submitted to
Shaoxun Xiang and Jinliang Zhang contributed equally to this work.
Biotechnology and Bioengineering
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0006-3592
1097-0290
1097-0290
DOI:10.1002/bit.28605